
Applied Intelligence
https://doi.org/10.1007/s10489-023-05057-7

Multi-scale adaptive attention-based time-variant neural networks for
multi-step time series forecasting

Gao Changxia1 · Zhang Ning1 · Li Youru1 · Lin Yan1 ·Wan Huaiyu1

Accepted: 26 September 2023
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

Abstract
Time series analysis is the process of exploring and analyzing past trends to predict future events for any given time interval.
Powered by recent advances in convolutional, recurrent and self-attention mechanisms, many deep learning methods have
facilitated the investigation of time series forecasting. However, despite their effectiveness, it is doubtful that future trends
can be accurately predicted due to the intricate temporal irregularities. Plus, time series frequently exhibit features at various
time scales, but existing approaches do not adequately take this into account. To address above issues, this paper offers a new
Multi-scale Adaptive attention-based Time-Variant neural Networks (MATVN) for multi-step ahead time series forecasting.
Specifically, we contribute a novel framework capable of capturing irregular dynamic behaviors observed in temporal data over
time with a Time-Variant architecture. Furthermore, a newly proposed Multi-scale Multi-head Adaptive attention module is
introduced into the Time-Variant architecture to encode temporal dependencies from various pre-defined scale-aware ranges.
Additionally, we endow the proposed module with more flexible individual representation learning and scale-aware attention
scopes for each token to better capture multi-scale temporal patterns by designing a new Adaptive Window-aware Mask
strategy. Experimental results on the vast majority of application scenarios, including climatology and energy consumption,
demonstrate that the proposed model outperforms a lot of recent state-of-the-art methods in multi-step time series forecasting
tasks.

Keywords Time series forecasting · Dynamic modeling · Multi-scale dependencies · Adaptive modeling

1 Introduction

Time series forecasting is an imperative ingredient across
multiple critical areas, including traffic forecasting [1], dis-
ease propagation analysis [2] and weather forecasting [3].
Multi-step prediction problem describes the complete trajec-
tory of predicting future sequence values over a relatively
long-time horizon instead of reducing future prediction to a
single value, which differs from one-step prediction prob-
lem [4]. Therefore, multi-step ahead time series forecasting
requires an accurate description of time series evolution.

However, over the past decade, existing methods such as
vector auto-regression (VAR) [5] and seasonal autoregressive
sliding average model (SARIMA) [6] have been designed to
solve time series forecasting problems by effectively trans-

B Wan Huaiyu
hywan@bjtu.edu.cn

1 School of Computer and Information Technology, Beijing
Jiaotong University, 100044 Beijing, China

forming non-stationary process into stationary one through
differencing.However, due to the stationary assumption, they
become ineffective for other numerous real-world time series
data with abrupt changes of distribution.

Recently, there has been a greater focus placed on deep
learning methods within the time series forecasting problem
[7]. Of particular concern in the area are Recurrent Neural
Networks-based (RNNs-based) approaches, which are ben-
eficial to capture time-series patterns due to their recurrent
structures that make the current hidden state highly relevant
to the previous one and the current input [8]. Convolu-
tional Neural Networks (CNNs)[9] become another popular
alternative that extract complex features by utilizing convo-
lutional filters in parallel. As a third category of effective
and commonly used tool, self-attention has inspired and
broadened new ideas for researchers to model time series.
Self-attention assists Transformer [10] in accessing any part
of history data without being affected by distance, mak-
ing it more effective in discovering long-term recurring
patterns. Taken together, approaches mentioned above do

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10489-023-05057-7&domain=pdf
http://orcid.org/0000-0002-0501-9363

G. Changxia et al.

achieve promising forecasting results, however, they suffer
from inadequate framework design in terms of the following
two aspects:

Time-invariant architecture Over a set of time steps, mul-
tiple components such as noise, seasonality and irregular
complex temporal patterns may be observed within a certain
range of scales [11]. It is noteworthy that the irregular scale
range that needs to be modeled will increase as the number
of forecast steps increases. Therefore, we speculate that if
the parameter and architecture of a model can be adjusted
accordingly with the irregular changes of these scales, it will
generate more accurate prediction results. However, RNNs
fail to achieve this goal because its parameter sharing mech-
anism impedes the model’s capacity to learn time-varying
relationships [12]. Specifically, the most commonly used
metaphor in describing RNNs is that of (nonlinear) dynami-
cal system.Thedynamics, in general, describe howaphysical
quantity (time series observation value Xt) changes over
time. For time series forecasting, the most important task
is how to model this nonlinear mapping function or the
dynamics f . To model the dynamics, RNNs maintain a vec-
tor ht that summarizes past observations and is updated as
ht = tanh(UXt + Wht−1). From the formula, we can see
that the dynamics of RNNs are still time-invariance since
parameters U and W are not determined by inputs but are
fixed and replicated over time [13], which is also shown in
Fig. 1(a). Similar cases also occur in CNNs. Be aware that
each filter of CNNs is replicated across the overall field. The
replicated units share the same weight vector and generate

a feature map, meaning all neurons in given convolutional
layer can be responsive to the same feature in their particular
visual responsefield [14]. This parameter sharingmechanism
in CNNs leads to a shift-invariance model in spatial domain,
which translates to time-invariance in time series applications
[15].We conjecture that the time-invariancemakes themodel
less effective to perform multi-step ahead time series fore-
casting task than one whose parameters change over time
shown in Fig. 1(b) due to the lack of capacity to capture
complex irregular temporal patterns. This issue is exten-
sively addressed in [16]. However, prediction performance
still needs to be improved because it does not sufficiently
take into account the characteristics of time series on various
time scales.

Fixed-size scopes Multi-scale information is important for
time series modeling [17]. It is well known that many phe-
nomena and processes in the real world often have patterns
of change over multiple time scales. This multi-scale infor-
mation is reflected in time series, which can be analyzed and
observed at different time scales to better understand and
explain the behavior and characteristics of the time series.
For example, meteorological phenomena are often subject to
by climate change at different scales such as daily, seasonal,
and annual. In this case, we speculate that if amodel can offer
greater flexibility in adjusting the attention scopes based on
the sequence dynamics, it can effectively capture the varia-
tions in the sequence at different scales, allowing for more
accurate identification of daily, seasonal, and yearly patterns
of change within the data. However, the structure of CNNs

Fig. 1 An illustration of a
simple example of Time-Variant
architecture in which hidden
cells are equipped with fully
connected layer. Of note,
although hidden cells (modules)
in Time-Variant architecture are
the same, the weights Wt differ
in the timeline direction. This is
different from RNN, whose cell
shares the same weight W with
the next cell along the time

123

Multi-scale adaptive attention-based time-variant neural...

does not meet such framework requirements because it con-
volves fixed-size filters along input sequence to provide some
clues about time series trends currently [15]. Employing such
convolutional filters makes it difficult for CNNs to alter to
arbitrary scales by conditioning their receptive fields based
on their input sequences, resulting in a lack of flexibility in
adapting to local time series dependencies. Some attention-
based improvements [18, 19] are proposed to address this
issue. They incorporate attention mechanisms into CNNs
to select representative feature information extracted from
different convolutional layers to dynamically construct task-
friendly local relations. Filters have fixed sizes, so multiple
convolutional layers are required to stack to get different
sizes of receptive fields. Therefore, it is inefficient due to the
unavoidable enumeration of all possible kernel sizes. Simi-
larly, RNNs also do not recognize data’s local characteristics
at variable scales because RNNs use a fixed-size hidden state
to store the sequence information [20].Moreover, as awidely
investigated alternative way, the self-attention can capture
global dependencies of sequences without consideration of
distances by taking into account all positions in input sig-
nals [10]. And its local-oriented variants [21–24] restrict the
attention scope from the global area to a local one to capture
local patterns or multiple scale patterns in time series. How-
ever, they are limited by employing pre-defined fixed-size
scopes, which raises the same issue as CNNs using fixed fil-
ters. Therefore, it appears from the evidence provided above
that these studies cannot flexibly learn adaptive sizes of local
features for sequential modeling.

In this paper, we attack the above issues using the fol-
lowing strategies. A novel algorithm termed as Multi-scale
Adaptive attention-based Time-Variant neural Networks
(MATVN) is proposed in this paper for multi-step time series
forecasting. The innovative idea of the proposal lies in its
Time-Variant architecture, which is committed to character-
izing the time series data in a dynamic manner and obtaining
more accurate forecasting results compared to the typical
CNNs-based and RNNs-based frameworks. Building on the
time-variant capability of MATVN, we design a Multi-scale
Multi-head Adaptive attention module to encode temporal
dependencies from different scale ranges. In addition, the
ability to obtain sequential information is further improved
by flexibly configuring different sizes of attention ranges for
each token in time series.

In general, we make the following main contributions:

1. We aim at formulating our multi-step ahead time series
architecture in a novel time-variant scheme to learn
dynamic irregular temporal behavior over time.

2. We present a Multi-scale Multi-head Adaptive attention
module capable of capturing scale-aware dependencies.
The proposed module encodes time series information
on different temporal scales.

3. In addition, a new Adaptive Window-aware Mask strat-
egy is also provided tomake the proposedmodule capture
diverse dependencies for time-series forecasting tasks.
Instead of choosing a suitable fixed attention range rep-
resentation for each token (the value corresponding to
each time point) in sequential data, the proposed module
can dynamically select the attention scopes so as to focus
only on the part that is relevant to the current input, which
improves the flexibility and generalization ability of the
model.

4. A series of experiments conducted on three benchmark
time series datasets show remarkable improvements with
the proposed approach compared to a large set of base-
lines.

The rest of the paper is organized as follows. Section 2
reviews some related work. Section 3 presents the problem
definition and symbol notation and then describes the pro-
posed approach. Section 4 analyzes the experimental results.
Finally, Section 5 provides the conclusion and future work.

2 Related work

A variety of models have been developed to improve time
series forecasting accuracy. For example, Hajirahimi et al.
[25] proposes a hybrid model and concludes that combin-
ing hybrid models leads to superior performance compared
to using a standalone model. Nevertheless, it is essential
to consider that the hybrid approaches typically require the
computation and integration of multiple prediction models,
which increases the complexity and computational cost of the
method. For some scenarios where there are ordered patterns
in datasets, Wu et al. [26] delves into the order-preserving
rule (OPR) mining and introduces the order-preserving rule
miner (OPR-Miner) algorithm, designed to uncover robust
rules from all frequent order-preserving patterns (OPPs), so
as to improve the prediction results of regular sequences.
More recently, the dominant direction inmodeling time series
forecasting tasks has been deep learning approaches. Com-
paratively speaking, deep learning methods utilize neural
networks and other models to make predictions by learning
features directly from the data without relying on pre-defined
patterns. As a result, deep learning has been widely used
in areas such as probabilistic prediction and point predic-
tion, and excels in handling complex patterns of large-scale
datasets. For example, Chen et al. [27] introduces a ver-
satile and adaptable deep hybrid graph-based probabilistic
forecasting framework. This framework employs a relational
global model to capture complex non-linear patterns globally
by considering the dependencies between time-series in the
graph. Simultaneously, it utilizes a relational local model
to capture the individual random effects of each time-series

123

G. Changxia et al.

locally. For point prediction, common deep learningmethods
can be broadly categorized into the following three groups:

Recurrent neural networks RNNs can significantly improve
prediction performance by storing historical information
with recurrent units. Ilhan et al. [28] introduces a new non-
linear regression RNN structure that can adaptively switch
between internal regions in a Markov way and be used for
non-stationary modeling of sequence data. Cirstea et al. [29]
designs an architecture for enhancing correlated time series
forecasting, in which RNN aims to capture the dynamics of
time series. Although these studies have yielded remarkable
forecasting results on numerous sequential tasks, theoreti-
cal evidence suggests that RNNs raise vanishing/exploding
gradient problems very easily when predicting a very long
sequence. In addition, once RNNs unfold with the time
dimension, we regard it as a time-invariant neural network
due to its parameter sharing mechanism, which hinders
its ability to describe the dynamics over time in complex
sequences. Furthermore, RNNs employ hidden states with
fixed-size to model time series dependencies, making it dif-
ficult to learn variable sizes of sequential information for
different tokens efficiently.

Convolutional neural networks There is a growing body
of literature that recognizes the importance of CNNs for
sequence learning. In comparison with the chain structure
in RNNs, CNNs capture temporal dependencies by stacking
multiple layers without any recurrent functions. Bai et al.
[30] compares and evaluates the convolutional and recurrent
frameworks, experimental results demonstrate that a simple
convolution framework exhibits better performance than a
recurrent framework on different tasks. Liu et al. [31] reports
a new design based nonpooling CNN to extract both real and
simulated sequential data with trends and seasonality. Tang
et al. [32] proposes a novel CNN-based approach named
Omni-Scale CNNs to cover appropriate receptive field size
across different datasets for time series classification.Despite
CNNs’ success in parallel computing, it’s important to be
aware of their following limitations. Similar time-invariant
cases also occur in CNNs, which restricts the capacity of the
model to encode information in a dynamic manner. It may
be problematic for CNNs to flexibly learn adaptive sizes of
local features because it convolves along inputs with fixed
filters.

Self-attention mechanism More recently, the existing liter-
ature on self-attention is extensive and focuses particularly
onmachine translation [33], sequential recommendation [34]
and time series forecasting [35].Wuet al. [36] designs a novel
decomposition architecture named Autoformer, in which
Auto-Correlationmechanismaims to capture time dependen-
cies at subsequence level. Wu et al. [37] utilizes Transformer

to capture long-term patterns from temporal data to forecast
influenza-like illness (ILI). Zhou et al. [38] introduces a novel
frequency-enhanced Transformer to improve its capability to
perform time series forecasting by combining the seasonal-
trenddecompositionmethodwithTransformer. These studies
have demonstrated that self-attention performs a supervi-
sory role in sequence modeling. A major limitation with this
type of method, however, is that canonical dot-product self-
attention is insensitive to local patterns. This main reason can
be attributed to the fact that it is difficult for self-attention
to disperse the distribution of attention because all the sig-
nals are considered simultaneously by weighted averaging.
Such structural flaw in self-attention will bring underlying
optimization issues to time series forecasting because in
time series forecasting task, the data close to each other
will have a great impact on each other [39]. Li et al. [23]
aims to mitigate this problem by limiting the attention region
to a local window using causal convolution. However, it is
also noteworthy that the local-orientedmethod explores local
temporal patterns with a fixed scope, making flexible mod-
eling and accurate prediction of time series impossible.

We suggest the following three ways to mitigate the afore-
mentioned issues. 1): We aim at formulating our multi-step
ahead time series architecture in a novel time-variant scheme
to model dynamics over time. 2): To empower time-variant
architecture to encode time information from multiple-scale
perspectives, we explore a novel module based on self-
attention. 3): In addition, a new strategy is developed to give
the proposed module more flexibility in selecting the most
important scale for each token in time series.

3 Methodology

In this section, the problem definition and symbol nota-
tion are given first. Then we introduce the overview of
the proposed model. Next, we elaborate on Time-Variant
architecture and its important components, including Input,
Multi-scale Multi-head Adaptive attention module, and Out-
put. Furthermore, we also provide the proof of time-variance
of proposed model. At last, we provide the loss function that
our model aims to minimize.

3.1 Preliminary

Multi-Step Time Series Forecasting. Given a series of his-
torical observations X1:t = {

X1, X2, . . . , Xt | Xt ∈ R
dx

}

recorded sequentially in time, where Xt ∈ R
dx is a value

at time t and dx is the last dimension of input data. Our
goal is to forecast multi-step time series values Ŷt+1:t+τ ={
ŷt+1, ŷt+2, . . . , ŷt+τ | ŷt ∈ R

dy
}
between time t + 1 and

123

Multi-scale adaptive attention-based time-variant neural...

time t + τ , where ŷt ∈ R
dy is the prediction at time t, τ is

defined as the number of prediction steps and dy is the ouput
dimension. We define the problem formulation as follows:

Ŷt+1:t+τ = f (X1:t ;�) (1)

where f (·) represents a nonlinear mapping function and �

denotes the learnable parameter.
Output dimension. Note that the dimension of the output
variable dy is not limited to univariate.Depending onwhether
dy is greater than 1, we categorize the forecasting problem
into univariate prediction and multivariate prediction.

3.2 Overall framework

We design a novel framework called Multi-scale Adaptive
attention-based Time-Variant neural Networks (MATVN) in
this paper. Figure 2 outlines its overall framework. From it,
we can see that different from [16], we primarily improve
the performance of multi-step time series forecasting from
the following two aspects: 1) Construct a novel Time-Variant
architecture, MATVN, to flexibly capture irregular dynamic
temporal behavior over time. 2) Design a new Multi-scale
Multi-head Adaptive attention (MMA) module to learn tem-
poral dependencies from different pre-defined scale-aware
ranges, in which Adaptive Window-aware Mask strategy
makes MMA extract features at various scales adaptively,
resulting in superior multi-scale feature representation.

3.3 Time-variant architecture

We contribute a novel time-variant neural network capable of
learning irregular dynamics observed in time series with its
Time-Variant architecture (TV architecture). Figure 2 depicts
its overall architecture. It is essentially a deep feed-forward
architecture with interleaved outputs, which mainly consists
of a series of inputs, a series of hidden modules, and a series
of outputs. In a feed-forward network, although the archi-
tecture of each hidden module is identical, each module has
its own unique parameter set. That is, the network between
interleaved outputs varies in terms of parameter and archi-
tecture over time. Thus, the result is a time-variant model.
In the following paragraphs, we will introduce the building
parts of TV architecture MATVN and its time-variant proof
in detail.

Input We transmit a set of univariate/multivariate sequence
data X1:t = [X1, X2, ..., Xt] ∈ R

B×L×dx to each hidden
module in the middle of TV architecture, where B denotes
the batch size, L represents the length of sequence data input
into the network, dx is the dimension of input data, which is
equal to 1 when input data is univariate.

Multi-scale multi-head adaptive attention As depicted in
Fig. 3, a novel self-attentionmodule is designed to adaptively
capture dependencies of different attention ranges for each
token from multiple scales. The proposed module mainly
consists of four parts, including an input linear layer, a posi-
tional encoding scheme, N encoder layers, and an output

Fig. 2 Graphical illustration of the MATVN framework. The overall
framework is a Time-Variant architecture, which is primarily embodied
in network structure that differs in parameters over time. Here, a series

of hidden modules sequentially connected in the middle of the archi-
tecture are illustrated with different colors to denote varying network
framework and parameter over time

123

G. Changxia et al.

Fig. 3 An illustration of MMAmodule, what is striking in the figure is
MMA layer in purple dotted box. It is clear from this figure that each
attention matrix in each head is restricted by adaptive windows, which
are formed by adding offsets learned from data to three pre-defined

fixed windows, respectively. This successfully turns Multi-scale Multi-
head Diverse attention (MMD)module intoMMA, which enables more
flexible multi-scale time series modeling

linear layer. It is noteworthy that there are two sub-layers,
i.e., a proposed self-attention sub-layer and a feed-forward
sub-layer in each encoder layer. Upon the output of the
two sub-layers, residual connection and normalization are
stacked.

The main goal of the input linear layer is to convert input
tensor X1:t = [X1, X2, · · · , Xt] ∈ R

B×L×dx into a higher
dimension tensor X1:t = [X1, X2, · · · , Xt] ∈ R

B×L×din for
enhancing data representation capacity. Owing to no recur-
rence and no convolution structure in the self-attention
mechanism, a smart positional encoding scheme is also added
to encode sequential information.

Then the converted tensor X1:t = [X1, X2, · · · , Xt] ∈
R

B×L×din is transmitted into N encoder layers. From Fig.
3, we can see that the proposed module and the canonical
Multi-head Self-Attention (MSA) differ in the layout of the
MMA layer, which is in charge of capturing local tempo-
ral patterns for each token in a time series from different
scale-aware perspectives using the learnable window. In the
following parts, we first introduce the canonical MSAmech-
anism and then elaborate on our proposed mechanism.

Broadly speaking, the essence of the MSA mechanism
is to allow the attention function to model richer depen-
dencies from different representation subspaces instead of

a single one. It can be formalized as: Given a time series
tensor X1:t = [X1, X2, · · · , Xt] ∈ R

B×L×din , with length
L and dimension din , then the multi-head self-attention
projects X1:t into query Qh , key Kh , and value Vh with
h = 1, 2, · · · H , where H is the total number of attention
heads. After linear projection, the attention matrix Atth and
the output headh of h-th head are defined as follows, respec-
tively.

Atth = Attention(Qh, Kh) = softmax

(
QhKT

h√
d

)

, (2)

headh = (Atth) Vh, (3)

Qh = Wh
(Q)X1:t , Kh = Wh

(K)X1:t , Vh = Wh
(V)X1:t , (4)

where d is the scaling factor, W (Q)
h , W (K)

h and W (V)
h

are learnable parameters. Afterwards, head1, · · · , headH are
concatenated and projected by learnable parameter W (O)

again as follows:

MSA(X1:t) = [head1, · · · , headH]W (O). (5)

123

Multi-scale adaptive attention-based time-variant neural...

As indicated above, MSA is a mechanism for relating all
the positions of the whole input sequence to get an atten-
tion weight matrix, which facilitates long-term dependencies
learning. However, in this form, it is a failure to disperse
the attention distribution, and then difficulty arises when an
attempt is made to capture local dependencies. Technically,
the simplest way to address this problem is to apply awindow
mask to each token in the self-attention weight matrix, limit-
ing it to focus on a set of surrounding representations. We let
the window size of each token i of attention weight matrix
be wini . This indicates that attention is only activated at the
position where the element is in the window. The position
with negative infinity outside the window is canceled.

Formally, the local window attention mask is defined as
follows:

M(wini)a,b =
{
0, if|a − b|≤ wini and b ≥ a

−∞, otherwise
,

(6)

where a, b ∈ {0, 1, . . . , L − 1} are positional indexes, and
i ∈ {1, 2, . . . , L} represents the i-th row of the matrix. Then,
we add it to canonical attention matrix to get the output of
Single-scale Multi-head Fixed attention (SMF) module:

SMF(X1:t , wini) =[head1(X1:t , wini), · · · , headH (X1:t , wini)]W (O),

(7)

where

headh(·) = (SMF-Atth)Vh

= softmax

(
QhKh

T

√
d

+ M
(
wini

)

a,b

)

Vh . (8)

We can deduce from (8) that when the element in the
mask M(wini)a,b is negative infinity, the value at the
corresponding position in headh is zero after calculating soft-
max, successfully overshadowing and suppressing the global
attention weight of standard self-attention. Nevertheless, we
believe that if a fixed-size window is relaxed to multiple
fixed-size windows with different sizes located in different
heads, self-attention can discover richer multi-scale sequen-
tial dependencies [21].

To realize the above idea, we investigate a Multi-scale
Multi-head Diverse attention (MMD)module. Figure 3 illus-
trates the architecture diagram of our proposal. We design
three groups of fixed-size windows Win = [wini1, wini2,
wini3] and let H = 3. Each element winih indicates the atten-
tion scope onwhich various tokens i in the attentionmatrix of
h -th head can focus. In this manner, we can extract informa-
tion frommultiple scales on different heads.Mathematically,

we hence get the following attention mask and the output of
MMD:

M(winih)a,b =
{
0, if |a − b|≤ winih and b ≥ a

−∞, otherwise
,

(9)

MMD(X1:t ,Win)

= [head1(X1:t , wini1), · · · , headH (X1:t , winih)]W (O),(10)

where
headh(·) = (MMD-Atth)Vh

= softmax

(
QhKh

T

√
d

+ M
(
winih

)

a,b

)

Vh . (11)

Furthermore, in order to empower MMD with the flexi-
bility to capture deeper multi-scale sequence dependencies,
an Adaptive Window-aware Mask is designed to allocate a
learnable window rather than a fixed-size one for each token.
As described in Fig. 3, we take fixed-size windows as refer-
ence, and then predict Adaptive Window-aware Offsets δD
on the reference, depending on input feature. Of note, in
δD, each element δdih denotes the learned offset of a fixed
window size for i-th token in sequence in h-th head. In this
way, each token is given an adjustable, learnablewindow size
rather than providing all tokens with fixed attention scopes.
Mathematically, the Adaptive Window-aware Vector AWin
is formulated as follows:

AWin = Win + δD

= Win + σE(Q) ∗ L

= Win + σ((W1Q + b1)W2 + b2) ∗ L, (12)

where W1, W2, b1 and b2 are trainable parameters. Q rep-
resents the query before grouping. E(·) can be defined as
any feature extractor, and in our design, we utilize a single
two-layer feed-forward sub-network. After that, a sigmoid
activate function σ whose value ranges from zero to one
is followed to predict offset. It is important to note that our
module degenerates toMMDwhen the offset is equal to zero.

Wegenerate anAdaptiveWindow-awareMaskM(winih+
δdih)a,b after obtaining the above AWin as follows:

M(winih + δdih)a,b =
{
0, if|a − b|≤ winih+δdih and b≥a

−∞, otherwise
,

(13)

123

G. Changxia et al.

Then we add M(winih + δdih)a,b to (3) to provide a more
flexible strategy for the self-attention mechanism. Formally,

headh(·) = (MMA-Atth)Vh

= softmax

(
QhKh

T

√
d

+ M
(
winih + δdih

)

a,b

)

Vh .

(14)

Finally, the output of MMA can be denoted as follows:

MMA(X1:t ,Win + δD) = [head1(X1:t , wini1 + δdi1), · · · ,

headH (X1:t , winih + δdih)]W (O) . (15)

Upon the output of the MMA layer, we add the feed-
forward layer to improve the expressiveness of the model.
It is well known that the feed-forward layer mainly consists
of two fully connected layers, between which is the ReLu
activation function. As illustrated in Fig. 3, its input can be
expressed as follows:

FFCin = LayerNorm(MMA(X1:t ,Win + δD) + X1:t),
(16)

where FFCin ∈ R
B×L×din is the value after preforming

Add&Normon the output ofMMAlayer,MMA(X1:t ,Win+
δD) ∈ R

B×L×din and input tensor X1:t ∈ R
B×L×din . Layer-

Norm denotes a form of normalization operation. And its
output can be formulated as follows:

FFCout = ReLu ((FFCin)W3 + b3)W4 + b4, (17)

ReLu(x) = max(0, x), (18)

where FFCout ∈ R
B×L×din represents the transformed space

of FFCin ,W3 ∈ R
din×d f , b3 ∈ R

d f ,W4∈R
d f×din , b4∈R

din

are learnable parameters. d f is the transformed dimension
through the first fully connected layer. In our design, we set
d f = 3din .

Then, an output linear layer is designed to produce the
expected prediction as follows:

ŷt = (ˆFFCout)W5 + b5, (19)

where ŷt ∈ R
B×dy denotes the predicted value at time t ,

ˆFFCout is a transformed value by performing Add&Norm
on FFCout ∈ R

B×L×din . It is worth noting that the shape
of ˆFFCout is ˆFFCout ∈ R

B×din because we first reshape
FFCout ∈ R

B×L×din into FFC ′
out ∈ R

B×din×L , then
FFC ′

out ∈ R
B×din×L is transformed into ˆFFCout ∈ R

B×din

by the last linear layer of MMA module. Finally, we get the

final prediction result ŷt ∈ R
B×dy after linear transformation

again,W5 ∈ R
din×dy and b5 ∈ R

dy are learnable parameters.

Output The forecast Ŷt+1:t+τ = [
ŷt+1, ŷt+2, . . . , ŷt+τ

]
is

provided by transmitting inputs (circles) toMATVN.Of note,
each hidden module is designed to generate a forecast. We
all know that the more output, the more likely the network
is to arise the vanishing gradient problem. In our design,
we alleviate this problem by having the structure interleave
the outputs between hidden modules, which decomposes the
chain into the sum of a series of factors instead of their prod-
uct, thus leading to a more stable network and more accurate
prediction results.

The time-variance of MATVN We detail the components of
our framework in the above paragraphs. To better illustrate
that our model is time-variance, a specific proof is provided
in the following part.

Theorem 1 As illustrated in Fig. 4, MATVN whose input is
Xt , hidden state is ht and forecast is ŷt at time t as follows:

ht = MMAt
(
Xt , ht−1, ŷt−1

)
, (20)

ŷt = Lt (ht), (21)

is a time-variant model, whereMMAt is a MMAmodule and
Lt is a linear layer at time t. ht−1 and ŷt−1 are hidden state
and prediction at time t − 1, respectively. We combine (20)
and (21) to deduce prediction ŷt at time t as follows:

ŷt = Lt (MMAt
(
Xt , ht−1, ŷt−1

)
). (22)

Proof Given input Xt and hidden state ht , we shift them by
t0 respectively to get shifted value of Xt , X ′

t = Xt−t0 and
shifted value of ht , h′

t = ht−t0 . In a time-invariance system,
time shift of input sequence leads to corresponding shift in
output sequence [40]. Thus, it requires thatŷt−t0 = ŷ′

t if sys-
tem is time-invariance. According to (22), ŷt−t0 and ŷ′

t can
be expressed as follows:

ŷt−t0 = Lt−t0(MMAt−t0

(
Xt−t0 , ht−t0−1, ŷt−t0−1

)
), (23)

where ŷt−t0 is the predicted value corresponding to input
Xt−t0 , ht−t0−1 is the hidden state and ŷt−t0−1 is the predicted
value of previous one time step, respectively.

ŷ′
t = L′

t (MMA′
t (X

′
t , h

′
t−1, ŷ

′
t−1))

= L′
t (MMA′

t (Xt−t0 , ht−t0−1, ŷ
′
t−1)), (24)

where ŷ′
t is the predicted value corresponding to input X ′

t ,
h′
t−1 is the hidden state and ŷ′

t−1 is the predicted value of
previous one time step, respectively. The MMA module and

123

Multi-scale adaptive attention-based time-variant neural...

Fig. 4 An illustration of the time-variance of MATVN. The network between interleaved outputs varies in terms of parameter and architecture over
time. Thus, MMA module and output layer are presented by different colors to indicate heterogeneity in the sequence

output layer also become MMA′
t and L′

t according to input
X ′
t . Through above reasoning, we conclude that MATVN is

time-variant because ŷt−t0 	= ŷt
′.
�

The input signal delay of MATVN not only shifts output
sequence in time, but also changes network parameter and
behavior. This differs from RNN in which the fixed param-
eters are reused at each time step. Therefore, we compare
and analyze the time invariance of RNN, which is conducive
to a better understanding of the time-variant structure of
MATVN.

Theorem 2 RNN whose input is Xt , hidden state is ht and
forecast is ŷt at time t shown below:

ht = F(Xt , ht−1), (25)

ŷt = L(ht), (26)

is a time-invariant model, where F aims to encode input
sequence and L is a linear layer. ht−1 is hidden state at time
t − 1. We combine (25) and (26) to get ŷt as follows:

ŷt = L(F(Xt , ht−1)). (27)

Proof Given input Xt and hidden state ht , we shift them by
t0 respectively to get shifted value of Xt , X ′

t = Xt−t0 and
shifted value of ht , h′

t = ht−t0 . It requires that ŷt−t0 = ŷ′
t if

the system is time-invariance. According to (27), ŷt−t0 and
ŷ′
t can be expressed as follows, respectively:

ŷt−t0 = L(F(Xt−t0 , ht−t0−1)), (28)

where ŷt−t0 is the predicted value corresponding to input
Xt−t0 , ht−t0−1 is the hidden state of previous one time step.

ŷ′
t = L(F(X ′

t , h
′
t−1))

= L(F(Xt−t0 , ht−t0−1)), (29)

where ŷ′
t is the predicted value corresponding to input X ′

t ,
h′
t−1 is the hidden state of previous one time step. Therefore,

RNN is time-invariant because ŷt−t0 = ŷ′
t .
�

With in-depth discussion and analysis,MATVNbreaks the
traditional time-invariant sequence modeling setting around
RNN,which is beneficial to better capture irregular dynamics
in multiple time steps.

3.4 Loss function.

In time series forecasting task, loss function is a measure
of the difference between the predicted values of the model
Ŷt+1:t+τ and the ground-truth Yt+1:t+τ . Mean Squared Error
(MSE) is a commonly used loss function in time series fore-
casting. It is worth noting that when using MSE as the loss
function, the ultimate goal is to adjust the parameters of the
model tomake theMSE as small as possible, so as to improve
the prediction accuracy of the model. Therefore, our ulti-
mate goal is tominimize the difference between ground-truth
Yt+1:t+τ and forecast Ŷt+1:t+τ via the following MSE opti-
mization objective loss function:

Loss� =
∥∥∥Yt+1:t+τ − Ŷt+1:t+τ

∥∥∥
2

2
, (30)

where � is the learning parameter of network.

4 Experiment

In this section, we begin by describing the real-world time
series datasets used in our approach. Then we compare
MATVN with classic and state-of-the-art baseline mod-
els. Subsequently, we detail some model training settings.
Finally, we provide an extensive experimental evaluation and
exhibit exhaustive discussions with regard to the forecasting
results we have achieved according to our contributions in
this paper.

123

G. Changxia et al.

4.1 Data description

Three datasets listed below are used in our paper to evaluate
MATVN.
Electricity Transformer Temperature (ETT) contains
electricity-related two-year data collected from two Chinese
stations. To explore the performance of the model on differ-
ent granularity data, we use different sampling frequencies
to obtain 15-minutes data ETTm1 and hourly data ETTh1,
ETTh2. Each data point contains six power load features and
the target value oil temperature. The TrainSet/ValSet/TestSet
is 12/4/4 months.

Electricity Consuming Load (ECL) datasets collect two-year
hourly electricity consumption of 321 clients. Due to miss-
ing data, the dataset is converted into hourly consumption
for two years, and the target value is set to ‘MT-320’. The
TrainSet/ValSet/TestSet is 15/3/4 months.

Weather collects the Max-Planck-Institute’s climatologi-
cal data every 10 minutes in 2020 year. Each data point
mainly contains 21 climate features including temperature
and air pressure etc. The TrainSet/ValSet/TestSet is 28/10/10
months.

4.2 Baseline Methods

We choose the commonly used traditional statistical pre-
diction model and a range of state-of-the-art deep learning
methods for time series forecasting as our baselines. Accord-
ing to our proposed innovations, we divide deep learning
methods baselines into the following two groups.

To verify the effectiveness of the time-variant mechanism
of MATVN, we consider LSTMa, DeepAR, and TCN as our
first group of baselines. LSTMa and DeepAR are examples
of sequencemodeling around RNN-basedmodels. And TCN
is another representative ofmodeling sequence dependencies
based on CNN.

We consider Reformer, LogTrans, Informer, and Aut-
oformer as the second group of our baselines. These
Transformer-based systems, which are highly effective, how-
ever, lack the capacity to enable free window deformation
of temporal modeling and capture dependencies at different
scales. We aim at demonstrating MATVN’s superiority in
these two aspects. These baselines are detailed as follows:

• SARIMA [6]: SARIMA is a commonly used and one of
the most representative methods in the field of traditional
time series forecasting.

• LSTMa [41]: The attention is added to LSTM for
sequence prediction.

• DeepAR [42]: DeepAR trains an autoregressive recur-
rent neural network to generate accurate probabilistic
forecasts on the high volume of related time series data.

• TCN [43]: TCN employs dilations and casual convolu-
tions to expand the receptive field to better adapt to time
series data.

• Reformer [44]: Reformer improves the efficiency of
Transformer by introducing a locality-sensitive hashing
mechanism for self-attention.

• LogTrans [23]: LogTrans makes the canonical Trans-
former sensitive to local context by introducing causal
convolution to self-attention.

• Informer [45]: Informer alleviates the issues of quadratic
memory usage and quadratic time complexity with
its proposed distilling operation and ProbSparse self-
attention when predicting long-sequence time series.

• Informer+ [45]: It is an Informer variant in which
canonical self-attention is used in place of ProbSparse
self-attention.

• Autoformer [36]: Autoformer designs a novel decompo-
sition architecture, in which auto-correlation mechanism
aims to capture time series dependencies at subsequence
level.

4.3 Settings

The ADAM optimizer is used to train our proposed method,
with a batch size of 16 and an initial learning rate of 1e-3.
Each dataset transmitted into the network is normalized by
zeromean.We implement all the experiments with PyTorch 1

on a singleNVIDIATITANRTX24GBGPU.MeanSquared
Error (MSE) and Mean Absolute Error (MAE) are used to
evaluate our model on three datasets as follows:

MSE = 1

N

N∑

i=1

(yi − ŷi)
2, (31)

MAE = 1

N

N∑

i=1

√
(yi − ŷi)2, (32)

where yi is ground-truth and ŷi is prediction and N is the
number of testing samples.

4.4 The Performance of Time-Variant Architecture

We repeat each experiment five times, and Tables 1, 2, 3
and 4 summary the evaluation results of MATVN compared
to other methods on three real-world datasets. From above
tables, the best forecasting results are highlighted in boldface,
and the conclusions are drawn in the following paragraphs.

MATVN is superior to these baselines by a large margin,
with about 30%-40% improvement in most cases and 60%-

1 The code has been released at https://github.com/chxiag/MATVN.

123

https://github.com/chxiag/{MATVN}.

Multi-scale adaptive attention-based time-variant neural...

Ta
bl
e
1

U
ni
va
ri
at
e
fo
re
ca
st
in
g
pe
rf
or
m
an
ce

(M
SE

)
of

M
A
T
V
N
ag
ai
ns
to

th
er

ba
se
lin

e
m
od
el
s
(m

ea
n±

st
d)

M
et
ho
ds

SA
R
IM

A
D
ee
pA

R
L
ST

M
a

R
ef
or
m
er

L
og
T
ra
ns

In
fo
rm

er
In
fo
rm

er
+

A
ut
of
or
m
er

M
A
T
V
N

E
T
T
h1

24
0.
10
8

0.
10
7±

0.
03
4

0.
11
4±

0.
02
3

0.
10
3±

0.
04
3

0.
02
2±

0.
01
8

0.
09
8±

0.
02
3

0.
09
2±

0.
01
0

0.
03
3±

0.
03
4

0.
01
8±

0.
01
2

48
0.
17
5

0.
16
2±

0.
01
8

0.
19
3±

0.
02
1

0.
28
4±

0.
02
2

0.
16
7±

0.
01
9

0.
15
8±

0.
02
5

0.
16
1±

0.
01
8

0.
05
1±

0.
01
5

0.
03
7±

0.
01
5

16
8

0.
39
6

0.
23
9±

0.
02
3

0.
23
6±

0.
01
9

1.
52
2±

0.
02
5

0.
20
7±

0.
02
8

0.
18
3±

0.
01
2

0.
18
7±

0.
00
9

0.
11
3±

0.
02
2

0.
09
2±

0.
02
5

33
6

0.
46
8

0.
44
5±

0.
03
3

0.
59
0±

0.
02
3

0.
59
0±

0.
02
3

0.
23
0±

0.
01
3

0.
22
2±

0.
02
4

0.
21
5±

0.
01
1

0.
10
7±

0.
02
5

0.
10
4±

0.
01
5

E
T
T
h2

24
3.
55
4

0.
09
8±

0.
02
5

0.
15
5±

0.
02
8

0.
26
3±

0.
01
9

0.
10
2±

0.
01
1

0.
09
3±

0.
02
2

0.
09
9±

0.
00
8

0.
11
4±

0.
02
8

0.
08
8±

0.
01
8

48
3.
19
0

0.
16
3±

0.
02
8

0.
19
0±

0.
02
2

0.
45
8±

0.
01
2

0.
16
9±

0.
01
3

0.
15
5±

0.
02
9

0.
15
9±

0.
01
8

0.
13
2±

0.
01
9

0.
10
8±

0.
02
8

16
8

2.
80
0

0.
25
5±

0.
02
0

0.
38
5±

0.
01
0

1.
02
9±

0.
01
1

0.
24
6±

0.
01
9

0.
23
2±

0.
03
3

0.
23
5±

0.
00
9

0.
18
7±

0.
03
5

0.
11
4±

0.
01
8

33
6

2.
75
3

0.
60
4±

0.
01
6

0.
55
8±

0.
01
8

1.
66
8±

0.
01
2

0.
26
7±

0.
01
1

0.
26
3±

0.
01
5

0.
25
8±

0.
01
1

0.
24
6±

0.
02
5

0.
11
8±

0.
01
2

E
T
T
m
1

24
0.
09
0

0.
09
1±

0.
01
9

0.
12
1±

0.
01
8

0.
09
5±

0.
02
3

0.
06
5±

0.
01
3

0.
03
0±

0.
02
5

0.
03
4±

0.
02
1

0.
01
9±

0.
01
5

0.
00
5±

0.
02
2

48
0.
17
9

0.
21
9±

0.
01
9

0.
30
5±

0.
01
1

0.
24
9±

0.
01
0

0.
07
8±

0.
00
9

0.
06
9±

0.
02
6

0.
06
6±

0.
01
9

0.
03
8±

0.
01
6

0.
02
3±

0.
01
2

96
0.
27
2

0.
36
4±

0.
02
9

0.
28
7±

0.
02
2

0.
92
0±

0.
01
2

0.
19
9±

0.
03
2

0.
19
4±

0.
02
1

0.
18
7±

0.
01
5

0.
05
6±

0.
03
1

0.
02
7±

0.
01
0

28
8

0.
46
2

0.
94
8±

0.
01
1

0.
52
4±

0.
01
0

1.
10
8±

0.
00
9

0.
41
1±

0.
02
9

0.
40
1±

0.
02
2

0.
40
9±

0.
00
7

0.
07
9±

0.
01
2

0.
06
5±

0.
01
3

E
C
L

48
0.
01
0

0.
20
4±

0.
01
3

0.
49
3±

0.
02
2

0.
97
1±

0.
03
2

0.
28
0±

0.
01
1

0.
23
9±

0.
02
1

0.
23
8±

0.
01
7

0.
22
9±

0.
03
1

0.
20
1±

0.
01
1

16
8

1.
03
2

0.
31
5±

0.
01
2

0.
72
3±

0.
01
4

1.
67
1±

0.
01
1

0.
45
4±

0.
02
1

0.
44
7±

0.
01
7

0.
44
2±

0.
02
2

0.
41
7±

0.
01
9

0.
30
8±

0.
01
9

33
6

1.
13
6

0.
41
4±

0.
02
1

1.
21
2±

0.
02
3

0.
52
8±

0.
02
7

0.
51
4±

0.
02
9

0.
48
9±

0.
03
9

0.
50
1±

0.
01
2

0.
45
2±

0.
03
7

0.
41
3±

0.
02
9

72
0

1.
25
1

0.
56
3±

0.
02
7

1.
51
1±

0.
01
7

4.
89
1±

0.
01
9

0.
55
8±

0.
02
9

0.
54
0±

0.
01
7

0.
54
3±

0.
01
0

0.
50
2±

0.
01
8

0.
49
7±

0.
02
8

w
ea
th
er

24
0.
21
9

0.
12
8±

0.
01
6

0.
13
1±

0.
01
9

0.
23
1±

0.
02
9

0.
13
6±

0.
02
8

0.
11
7±

0.
03
8

0.
11
9±

0.
00
9

X
0.
10
9±

0.
01
8

0.
10
3±

0.
01
8

48
0.
27
3

0.
20
3±

0.
01
3

0.
19
0±

0.
01
9

0.
32
8±

0.
00
8

0.
20
6±

0.
01
8

0.
17
8±

0.
03
8

0.
18
5±

0.
01
9

0.
16
9±

0.
01
8

0.
16
1±

0.
01
8

16
8

0.
50
3

0.
29
3±

0.
01
8

0.
34
1±

0.
01
1

0.
65
4±

0.
01
2

0.
30
9±

0.
02
2

0.
26
6±

0.
01
2

0.
26
9±

0.
02
1

0.
24
9±

0.
01
6

0.
21
7±

0.
01
3

33
6

0.
72
8

0.
58
5±

0.
02
9

0.
45
6±

0.
03
3

1.
79
2±

0.
03
1

0.
35
9±

0.
02
1

0.
29
7±

0.
01
0

0.
31
0±

0.
01
3

0.
29
6±

0.
00
9

0.
28
8±

0.
01
4

∗ R
ep
or
te
d
m
et
ri
cs

ex
ce
pt

A
ut
of
or
m
er

an
d
M
A
T
V
N
al
lc
om

e
fr
om

th
e
In
fo
rm

er
pa
pe
r
(Z
ho
u
et
al
.,
20
21
)

123

G. Changxia et al.

Ta
bl
e
2

U
ni
va
ri
at
e
fo
re
ca
st
in
g
pe
rf
or
m
an
ce

(M
A
E
)
of

M
A
T
V
N
ag
ai
ns
to

th
er

ba
se
lin

e
m
od
el
s
(m

ea
n±

st
d)

M
et
ho
ds

SA
R
IM

A
D
ee
pA

R
L
ST

M
a

R
ef
or
m
er

L
og
T
ra
ns

In
fo
rm

er
In
fo
rm

er
+

A
ut
of
or
m
er

M
A
T
V
N

E
T
T
h1

24
0.
28
4

0.
28
0±

0.
01
5

0.
27
2±

0.
02
6

0.
38
9±

0.
01
9

0.
25
9±

0.
01
1

0.
24
7±

0.
01
0

0.
24
6±

0.
00
1

0.
15
2±

0.
01
7

0.
11
3±

0.
01
6

48
0.
42
4

0.
32
7±

0.
01
4

0.
35
8±

0.
01
5

0.
44
5±

0.
00
8

0.
32
8±

0.
02
3

0.
31
9±

0.
01
1

0.
32
2±

0.
01
2

0.
18
1±

0.
01
1

0.
15
9±

0.
02
2

16
8

0.
50
4

0.
42
2±

0.
01
3

0.
39
2±

0.
02
3

1.
19
1±

0.
01
6

0.
37
5±

0.
00
9

0.
34
6±

0.
01
4

0.
35
5±

0.
01
2

0.
23
2±

0.
01
5

0.
19
8±

0.
02
4

33
6

0.
59
3

0.
55
2±

0.
02
4

0.
69
8±

0.
01
6

1.
12
4±

0.
02
4

0.
39
8±

0.
01
6

0.
38
7±

0.
01
4

0.
36
9±

0.
01
2

0.
25
8±

0.
02
2

0.
21
9±

0.
01
3

E
T
T
h2

24
0.
44
5

0.
26
3±

0.
00
9

0.
30
7±

0.
01
5

0.
43
7±

0.
01
6

0.
25
5±

0.
01
5

0.
24
0±

0.
01
4

0.
24
1±

0.
01
2

0.
24
9±

0.
01
1

0.
21
4±

0.
01
5

48
0.
47
4

0.
34
1±

0.
02
4

0.
34
8±

0.
02
4

0.
54
5±

0.
02
5

0.
34
8±

0.
03
5

0.
31
4±

0.
01
5

0.
31
7±

0.
01
2

0.
27
8±

0.
02
5

0.
22
6±

0.
01
6

16
8

0.
59
5

0.
41
4±

0.
01
8

0.
51
4±

0.
01
6

0.
87
9±

0.
01
8

0.
42
2±

0.
02
2

0.
38
9±

0.
02
7

0.
39
0±

0.
01
7

0.
32
2±

0.
01
9

0.
22
8±

0.
02
5

33
6

0.
73
8

0.
60
7±

0.
02
4

0.
60
6±

0.
01
8

1.
22
8±

0.
01
9

0.
43
7±

0.
03
4

0.
41
7±

0.
03
3

0.
42
3±

0.
03
0

0.
38
9±

0.
03
5

0.
24
3±

0.
01
9

E
T
T
m
1

24
0.
20
6

0.
24
3±

0.
03
3

0.
23
3±

0.
02
2

0.
22
8±

0.
02
5

0.
20
2±

0.
01
7

0.
13
7±

0.
01
8

0.
16
0±

0.
01
1

0.
13
2±

0.
01
9

0.
05
2±

0.
01
1

48
0.
30
6

0.
36
2±

0.
02
6

0.
41
1±

0.
02
6

0.
39
0±

0.
02
1

0.
22
0±

0.
01
9

0.
20
3±

0.
01
1

0.
19
4±

0.
01
0

0.
15
7±

0.
01
0

0.
11
7±

0.
01
1

96
0.
39
9

0.
49
6±

0.
01
1

0.
42
0±

0.
01
0

0.
76
7±

0.
00
9

0.
38
6±

0.
00
1

0.
37
2±

0.
00
9

0.
38
4±

0.
01
9

0.
18
3±

0.
02
3

0.
12
9±

0.
01
9

28
8

0.
55
8

0.
79
5±

0.
01
5

0.
58
4±

0.
01
7

1.
24
5±

0.
01
9

0.
57
2±

0.
01
7

0.
55
4±

0.
02
9

0.
54
8±

0.
01
1

0.
21
6±

0.
02
1

0.
17
5±

0.
01
1

E
C
L

48
0.
76
4

0.
35
7±

0.
01
1

0.
53
9±

0.
01
9

0.
88
4±

0.
01
6

0.
42
9±

0.
01
1

0.
35
9±

0.
04
5

0.
36
8±

0.
02
5

0.
30
9±

0.
04
4

0.
29
9±

0.
01
8

16
8

0.
83
3

0.
43
6±

0.
02
3

0.
65
5±

0.
02
0

1.
58
7±

0.
01
9

0.
52
9±

0.
01
8

0.
50
3±

0.
01
7

0.
51
4±

0.
01
0

0.
45
8±

0.
01
6

0.
43
3±

0.
01
4

33
6

0.
87
6

0.
51
9±

0.
01
2

0.
89
8±

0.
02
9

2.
19
6±

0.
02
8

0.
56
3±

0.
02
7

0.
52
8±

0.
02
6

0.
55
2±

0.
01
6

0.
49
1±

0.
02
3

0.
47
8±

0.
02
0

72
0

0.
93
3

0.
59
5±

0.
01
8

0.
96
6±

0.
01
7

4.
04
7±

0.
02
8

0.
60
9±

0.
02
5

0.
57
1±

0.
02
4

0.
57
8±

0.
01
1

0.
53
1±

0.
02
1

0.
50
9±

0.
02
1

w
ea
th
er

24
0.
35
5

0.
27
4±

0.
02
1

0.
25
4±

0.
01
9

0.
40
1±

0.
01
1

0.
27
9±

0.
01
2

0.
25
1±

0.
02
9

0.
25
6±

0.
01
9

0.
24
9±

0.
01
9

0.
23
1±

0.
01
0

48
0.
40
9

0.
35
3±

0.
01
0

0.
33
4±

0.
01
1

0.
42
3±

0.
01
8

0.
35
6±

0.
01
7

0.
31
8±

0.
01
6

0.
31
6±

0.
01
0

0.
31
4±

0.
02
7

0.
30
6±

0.
02
2

16
8

0.
59
9

0.
45
1±

0.
01
8

0.
44
8±

0.
01
7

0.
63
4±

0.
01
9

0.
43
9±

0.
01
8

0.
39
8±

0.
01
7

0.
40
4±

0.
00
9

0.
37
4±

0.
01
1

0.
35
8±

0.
01
1

33
6

0.
73
0

0.
64
4±

0.
01
1

0.
55
4±

0.
02
9

1.
09
3±

0.
01
1

0.
48
4±

0.
03
9

0.
41
6±

0.
01
1

0.
42
2±

0.
01
5

0.
37
8±

0.
01
8

0.
37
4±

0.
02
5

123

Multi-scale adaptive attention-based time-variant neural...

Ta
bl
e
3

M
ul
tiv

ar
ia
te
fo
re
ca
st
in
g
pe
rf
or
m
an
ce

(M
SE

)
of

M
A
T
V
N
ag
ai
ns
to

th
er

ba
se
lin

e
m
od

el
s
(m

ea
n±

st
d)

M
et
ho
ds

SA
R
IM

A
L
ST

M
a

T
C
N

R
ef
or
m
er

L
og
T
ra
ns

In
fo
rm

er
In
fo
rm

er
+

A
ut
of
or
m
er

M
A
T
V
N

E
T
T
h1

24
0.
66
6

0.
65
0±

0.
02
2

1.
19
3±

0.
01
3

0.
99
1±

0.
01
5

0.
68
6±

0.
01
9

0.
57
7±

0.
02
1

0.
62
0±

0.
01
8

0.
38
4±

0.
02
4

0.
30
8±

0.
02
9

48
0.
77
8

0.
70
2±

0.
02
2

1.
35
6±

0.
01
4

1.
31
3±

0.
01
7

0.
76
6±

0.
02
9

0.
68
5±

0.
01
1

0.
69
2±

0.
01
2

0.
39
2±

0.
01
8

0.
31
4±

0.
02
4

16
8

1.
24
5

1.
21
2±

0.
02
1

1.
90
7±

0.
02
0

1.
82
4±

0.
01
8

1.
00
2±

0.
01
9

0.
93
1±

0.
02
0

0.
94
7±

0.
01
4

0.
49
0±

0.
02
6

0.
34
8±

0.
02
2

33
6

1.
45
5

1.
42
4±

0.
01
9

2.
57
2±

0.
01
8

2.
11
7±

0.
01
9

1.
36
2±

0.
02
2

1.
12
8±

0.
02
5

1.
09
4±

0.
02
6

0.
50
5±

0.
02
3

0.
37
6±

0.
01
9

E
T
T
h2

24
1.
15
5

1.
14
3±

0.
02
1

2.
58
9±

0.
01
9

1.
53
1±

0.
02
0

0.
82
8±

0.
03
2

0.
72
0±

0.
02
2

0.
75
3±

0.
01
2

0.
26
1±

0.
01
9

0.
21
3±

0.
01
1

48
1.
68
9

1.
67
1±

0.
02
8

2.
66
9±

0.
01
9

1.
87
1±

0.
02
2

1.
80
6±

0.
02
5

1.
45
7±

0.
01
1

1.
46
1±

0.
00
9

0.
31
2±

0.
01
0

0.
24
7±

0.
02
4

16
8

4.
16
9

4.
11
7±

0.
01
1

2.
87
5±

0.
02
0

4.
66
0±

0.
01
3

4.
07
0±

0.
01
1

3.
48
9±

0.
02
0

3.
48
5±

0.
01
0

0.
45
7±

0.
01
2

0.
35
4±

0.
01
0

33
6

3.
54
4

3.
43
4±

0.
01
0

2.
94
1±

0.
01
5

4.
02
8±

0.
02
5

3.
87
5±

0.
01
9

2.
72
3±

0.
01
0

2.
62
6±

0.
00
7

0.
47
1±

0.
01
1

0.
47
0±

0.
01
1

E
T
T
m
1

24
0.
62
8

0.
62
1±

0.
02
5

1.
85
4±

0.
02
3

0.
72
4±

0.
02
1

0.
41
9±

0.
02
0

0.
32
3±

0.
02
9

0.
30
6±

0.
01
8

0.
38
3±

0.
02
0

0.
14
4±

0.
01
9

48
1.
45
6

1.
39
2±

0.
02
5

1.
87
2±

0.
02
3

1.
09
8±

0.
02
1

0.
50
7±

0.
02
0

0.
49
4±

0.
01
9

0.
46
5±

0.
01
1

0.
45
4±

0.
02
0

0.
15
9±

0.
01
1

96
1.
44
5

1.
33
9±

0.
02
2

2.
66
9±

0.
01
2

1.
43
3±

0.
02
5

0.
76
8±

0.
02
2

0.
67
8±

0.
02
2

0.
68
1±

0.
01
0

0.
48
1±

0.
02
0

0.
14
3±

0.
01
0

28
8

1.
78
8

1.
74
0±

0.
02
4

2.
67
2±

0.
01
5

1.
82
0±

0.
01
4

1.
46
2±

0.
01
9

1.
05
6±

0.
01
9

1.
16
2±

0.
01
2

0.
63
4±

0.
01
1

0.
43
8±

0.
02
5

E
C
L

48
0.
49
7

0.
48
6±

0.
02
3

0.
58
6±

0.
02
8

1.
40
4±

0.
02
1

0.
35
5±

0.
01
1

0.
34
4±

0.
01
5

0.
33
4±

0.
01
1

0.
28
6±

0.
01
5

0.
04
6±

0.
02
2

16
8

0.
65
4

0.
60
2±

0.
02
2

0.
68
2±

0.
02
2

1.
06
9±

0.
02
3

0.
43
2±

0.
01
2

0.
42
4±

0.
01
8

0.
42
0±

0.
01
3

0.
38
9±

0.
01
8

0.
33
1±

0.
02
2

33
6

0.
89
1

0.
88
6±

0.
01
5

0.
59
8±

0.
01
1

1.
60
1±

0.
02
1

0.
37
3±

0.
02
2

0.
38
1±

0.
02
3

0.
38
1±

0.
01
3

0.
35
6±

0.
02
0

0.
33
8±

0.
02
1

72
0

1.
80
1

1.
67
6±

0.
02
1

0.
69
6±

0.
01
2

2.
00
9±

0.
01
2

0.
40
9±

0.
02
1

0.
40
6±

0.
02
1

0.
39
1±

0.
01
7

0.
38
7±

0.
02
3

0.
37
7±

0.
02
2

w
ea
th
er

24
1.
60
1

0.
54
6±

0.
01
8

0.
47
9±

0.
01
2

0.
65
5±

0.
01
9

0.
43
5±

0.
01
3

0.
33
5±

0.
01
7

0.
34
9±

0.
01
5

0.
24
9±

0.
01
1

0.
23
5±

0.
01
0

48
0.
86
7

0.
82
9±

0.
01
9

0.
48
6±

0.
01
2

0.
72
9±

0.
01
1

0.
42
6±

0.
01
9

0.
39
5±

0.
01
7

0.
38
6±

0.
00
9

0.
32
8±

0.
01
2

0.
32
5±

0.
01
2

16
8

1.
16
7

1.
03
8±

0.
01
2

0.
49
4±

0.
01
1

1.
31
8±

0.
01
3

0.
72
7±

0.
01
1

0.
60
8±

0.
01
0

0.
61
3±

0.
01
3

0.
34
0±

0.
02
3

0.
33
1±

0.
02
3

33
6

1.
76
7

1.
65
7±

0.
02
3

0.
50
8±

0.
01
2

1.
93
0±

0.
01
9

0.
75
4±

0.
01
2

0.
70
2±

0.
01
3

0.
70
7±

0.
01
5

0.
35
9±

0.
01
9

0.
34
2

±
0.
01
3

123

G. Changxia et al.

Ta
bl
e
4

M
ul
tiv

ar
ia
te
fo
re
ca
st
in
g
pe
rf
or
m
an
ce

(M
A
E
)
of

M
A
T
V
N
ag
ai
ns
to

th
er

ba
se
lin

e
m
od

el
s
(m

ea
n±

st
d)

M
et
ho
ds

SA
R
IM

A
L
ST

M
a

T
C
N

R
ef
or
m
er

L
og
T
ra
ns

In
fo
rm

er
In
fo
rm

er
+

A
ut
of
or
m
er

M
A
T
V
N

E
T
T
h1

24
0.
63
3

0.
62
4±

0.
01
1

0.
87
5±

0.
01
2

0.
75
4±

0.
01
0

0.
60
4±

0.
02
2

0.
54
9±

0.
01
8

0.
57
7±

0.
01
1

0.
42
5±

0.
01
9

0.
40
5±

0.
01
9

48
0.
68
8

0.
67
5±

0.
01
2

0.
93
0±

0.
02
3

0.
90
6±

0.
03
1

0.
75
7±

0.
03
2

0.
62
5±

0.
03
3

0.
67
1±

0.
02
2

0.
41
9±

0.
01
9

0.
41
7±

0.
01
0

16
8

0.
91
3

0.
86
7±

0.
02
0

1.
20
1±

0.
01
1

1.
13
8±

0.
00
9

0.
84
6±

0.
00
1

0.
75
2±

0.
01
3

0.
79
7±

0.
01
1

0.
48
1±

0.
03
4

0.
43
1±

0.
03
3

33
6

0.
10
1

0.
99
4±

0.
02
0

1.
32
1±

0.
01
1

1.
28
0±

0.
03
3

0.
95
2±

0.
01
1

0.
87
3±

0.
01
0

0.
81
3±

0.
01
1

0.
48
4±

0.
01
1

0.
43
9±

0.
02
2

E
T
T
h2

24
0.
82
3

0.
81
3±

0.
03
0

1.
34
9±

0.
01
1

1.
61
3±

0.
00
3

0.
75
0±

0.
01
1

0.
66
5±

0.
02
9

0.
72
7±

0.
02
0

0.
34
1±

0.
01
0

0.
33
8±

0.
01
9

48
0.
13
2

1.
22
1±

0.
03
0

1.
57
8±

0.
01
7

1.
73
5±

0.
01
9

1.
03
4±

0.
01
8

1.
00
1±

0.
01
6

1.
07
7±

0.
01
1

0.
37
3±

0.
01
0

0.
36
4±

0.
02
0

16
8

1.
67
7

1.
67
4±

0.
01
9

2.
40
8±

0.
02
8

1.
84
6±

0.
02
0

1.
68
1±

0.
01
1

1.
51
5±

0.
01
0

1.
61
2±

0.
01
3

0.
45
5±

0.
01
8

0.
45
0±

0.
01
9

33
6

1.
55
5

1.
54
9±

0.
00
9

2.
41
2±

0.
01
8

1.
68
8±

0.
02
3

1.
76
3±

0.
01
6

1.
34
0±

0.
01
9

1.
28
5±

0.
01
4

0.
47
5±

0.
01
7

0.
47
2±

0.
00
9

E
T
T
m
1

24
0.
63
3

0.
62
9±

0.
03
3

1.
06
5±

0.
02
3

0.
60
7±

0.
02
3

0.
41
2±

0.
02
6

0.
36
9±

0.
01
9

0.
37
1±

0.
01
6

0.
40
3±

0.
01
1

0.
23
6±

0.
01
1

48
0.
99
2

0.
93
9±

0.
00
9

1.
10
5±

0.
01
1

0.
77
7±

0.
02
1

0.
58
3±

0.
02
9

0.
50
3±

0.
01
8

0.
47
0±

0.
01
0

0.
45
3±

0.
02
1

0.
28
0±

0.
01
1

96
0.
92
5

0.
91
3±

0.
02
2

1.
43
4±

0.
03
5

0.
94
5±

0.
03
4

0.
79
2±

0.
04
6

0.
61
4±

0.
01
9

0.
61
2±

0.
01
5

0.
46
3±

0.
02
3

0.
27
9±

0.
01
0

28
8

1.
23
2

1.
12
4±

0.
02
0

1.
44
2±

0.
01
1

1.
09
4±

0.
00
9

1.
32
0±

0.
02
1

0.
78
6±

0.
01
0

0.
87
9±

0.
01
1

0.
52
8±

0.
01
1

0.
35
4±

0.
01
1

E
C
L

48
0.
58
1

0.
57
2±

0.
03
3

0.
67
2±

0.
06
7

0.
99
9±

0.
01
1

0.
41
8±

0.
01
9

0.
39
3±

0.
01
1

0.
39
9±

0.
01
3

0.
30
5±

0.
01
2

0.
15
2±

0.
01
1

16
8

0.
61
2

0.
57
4±

0.
01
0

0.
59
2±

0.
01
1

1.
51
5±

0.
01
9

0.
36
8±

0.
01
1

0.
36
8±

0.
00
9

0.
35
3±

0.
01
9

0.
33
4±

0.
01
9

0.
31
5±

0.
01
1

33
6

0.
89
9

0.
88
6±

0.
01
5

0.
59
8±

0.
02
3

1.
60
1±

0.
02
2

0.
37
3±

0.
02
7

0.
38
1±

0.
02
6

0.
38
1±

0.
01
6

0.
35
6±

0.
01
9

0.
33
8±

0.
02
1

72
0

0.
89
9

1.
67
6±

0.
01
0

0.
69
6±

0.
01
7

2.
00
9±

0.
01
8

0.
40
9±

0.
02
0

0.
40
6±

0.
02
1

0.
39
1±

0.
01
1

0.
38
7±

0.
02
3

0.
37
7±

0.
02
9

w
ea
th
er

24
0.
61
5

0.
54
6±

0.
02
2

0.
47
9±

0.
01
0

0.
65
5±

0.
01
9

0.
43
5±

0.
02
2

0.
33
5±

0.
01
2

0.
34
9±

0.
00
7

0.
24
9±

0.
01
1

0.
23
5±

0.
02
2

48
0.
86
1

0.
82
9±

0.
01
0

0.
48
6±

0.
01
1

0.
72
9±

0.
01
3

0.
42
6±

0.
01
1

0.
39
5±

0.
01
6

0.
38
6±

0.
01
2

0.
32
8±

0.
01
3

0.
32
5±

0.
01
5

16
8

1.
11
2

1.
03
8±

0.
01
0

0.
49
4±

0.
03
8

1.
31
8±

0.
03
2

0.
72
7±

0.
01
9

0.
60
8±

0.
01
4

0.
61
3±

0.
00
4

0.
34
0±

0.
01
1

0.
33
1±

0.
01
1

33
6

1.
67
7

1.
65
7±

0.
01
0

0.
50
8±

0.
02
2

1.
93
0±

0.
03
0

0.
75
4±

0.
01
0

0.
70
2±

0.
03
3

0.
70
7±

0.
01
3

0.
35
9±

0.
01
1

0.
34
2±

0.
02
2

123

Multi-scale adaptive attention-based time-variant neural...

70% improvement in some cases and its forecasting errors
rise steadily rather than sharply within the growing number
of prediction steps, which demonstrates that MATVN has
excellent sequence modeling ability in multi-step time series
forecasting problems.

From above tables, it is evident that SARIMA does not
exhibit superior prediction performance in long-term fore-
casting compared to other deep learning methods. This is
mainly because that SARIMA model is still based on the
assumption of linearity, which assumes that the seasonal-
ity and trend of the time series are linear. This may not be
sufficient to capture some nonlinear relationships, especially
when there are complex nonlinear patterns in the data, such
as ETTm1 dataset.

For LSTMa and DeepAR, MATVN outperforms these
RNN-based neural networks in both multivariate and uni-
variate settings. The MATVN model, in particular, exhibits
outstanding performance in the following scenarios. For
univariate prediction results, MATVN outperforms LSTMa
acrossETTh1,ETTh2,ETTm1andWeather datasets onMSE
by decreasing 61.16% in average when prediction length
is 24. And MATVN outperforms LSTMa across ETTh1,
ETTh2, ECL and Weather datasets on MAE by decreasing
51.94% in average when prediction length is 336. Further-
more, when comparing the performance of MATVN and
LSTMa on MSE and MAE metrics for multivariate predic-
tion across the ETTh1, ETTh2, ECL, and Weather datasets,
MATVN exhibits significant superiority. It achieves an aver-
age decrease of 68.95% on MSE when prediction length is
168 and 66.64% on MAE when prediction length is 336. We
speculate that this ismainly because these RNN-based neural
networks use parameter sharing by repeating a set of fixed
architectures with fixed parameters in time or space, which
limits the ability of RNN-based methods to capture irreg-
ular and nonlinear time series data. Fortunately, compared
with time-invariant RNN-based models, MATVN allows the
parameters of the model to adjust accordingly with the irreg-
ular changes of these scales, thus capturing the sharp changes
of the sequence more sensitively. From a global perspective,
LSTMa and DeepAR exhibit worse performance on longer
forecast steps for almost all datasets. It can be confidently
surmised that although they are designed to perform better
relative to simple RNNs, they still suffer from the problem of
gradient vanishing, especially when dealing with very long
sequences. In these cases, it is still possible for the gradient
to gradually decrease, leading to difficulty in convergence or
poor training results.

The other most typical paradigm in temporal modeling
is TCN, which mainly capitalizes on dilated convolutions
for expanding the receptive field on input data to support
sequence prediction. Similar to RNN-based architectures,
CNN-based models achieve shift invariance in the spatial
domain, which they translate into time-invariance in time

series applications. We conjecture that time invariance pre-
vents CNN-basedmodels from sensitively capturing changes
in irregular sequences, thus reducing the ability to model
complex dependencies and hindering the capacity to per-
form multi-step-ahead time series forecasting. Based on our
analysis, we attribute the following experiment results to this
underlying cause.MATVNoutperforms TCN across ETTh1,
ETTh2, ECL and Weather datasets, the MSE decreases
61.35% in average when prediction length is 336. And
MATVN also demonstrates better performance than TCN
on the ETTh1, ETTh2, ETTm1, ECL and Weather datasets,
with an average MAE reduction of 67.61% when prediction
length is 48.

4.5 The performance of multi-scale adaptive
sequencemodeling

We conduct a series of experiments on these datasets to ana-
lyze which of the following scale-aware neural networks
listed below can better improve inference performance.

• MATVN-FS: Its hidden module is equipped with the
SMF module, which aims to capture single-scale fixed-
scope local dependencies in the sequence.

• MATVN-VM: It replaces the SMF module with the
MMDmodule to learnmulti-scale fixed-scope time series
information.

• SATVNN: Its hidden module makes the contribution of
tokens with different distances to current token obeys
Cauchy distribution. This attenuation mechanism makes
the model more flexible to capture single-scale local cor-
relation of time series data.

• MATVN: It replaces the MMD module with the MMA
module to flexibly capture multi-scale temporal dynam-
ics.

The comparison experimental results of four models on
all benchmark datasets are visualized in Fig. 5. It is apparent
thatMATVNachieves the lowest error across all datasets, and
we also draw the following conclusions. First, the capacity of
model to learn sequential dependencies is enhancedwhen the
number of windows (scales) is increased from 1 to 3 under
the same fixed-scope or more flexible sequence modeling
way. In particular, MATVN-VM model’s MSE on the ETT*
datasets is 4.24% lower than that of MATVN-FS in average.
On the ECL dataset, the MAE of MATVN-VM is 7.60%
lower than that of MATVN-FS, and the MAE obtained by
MATVNonWeather datasets is also 5.34% lower than that of
SATVNN.This ismainly attributed tomore diverse dynamics
at different temporal resolutions canbe captured byMATVN-
VM and MATVN than MATVN-FS and SATVNN.

Subsequently, we find that when we modify the fixed-
scope modeling way to the adaptive modeling way, the

123

G. Changxia et al.

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45
MATVN-FS

MATVN-VM

ETTh1 ETTh2 ETTm1 ECL Weather

M
S
E

M
A
E

SATVNN

MATVN

MATVN-FS

MATVN-VM
SATVNN

MATVN

ETTh1 ETTh2 ETTm1 ECL Weather
0.00

Fig. 5 Multivariate forecasting results with a prediction length of 48 for MATVN-FS, MATVN-VM, SATVNN and MATVN on all real-world
datasets

forecasting results are greatly improved in both single-scale
modeling and multi-scale modeling. More specifically, on
the ETTh2 dataset, the MSE of SATVNN is 16.82% lower
than that of MATVN-FS, and the MSE obtained by MATVN
is 16.55% lower than that of MATVN-VM. This is mainly
due to the fact that adaptive scale modeling allows the model
flexibility to choose appropriate attention scopes according
to the requirements of the task and the data, thus captur-
ing the relationships between tokens more accurately. This
flexibility improves the model’s sensitivity to the data and
contributes to better modeling. Moreover, in order to demon-
strate the stronger generalization ability of the proposed
model, we further elaborate on the superiority of MATVN
against other state-of-the-art Transformer-based methods by
comparing prediction performance under multiple future
horizons including {24, 48, 96, 168, 288, 336, 720}, respec-
tively. This design preciselymeets the definition ofmulti-step
time series forecasting. The following results are univariate
and multivariate settings.

Univariate results In this part, we elaborate on forecasting
performance of MATVN against other Transformer-based
models. It is apparent fromTables 1 and2 that, comparedwith
extensive baselines, MATVN still significantly enhances the
inference capacity across all datasets. In particular, MATVN
achieves 10.83% (0.240 → 0.214) improvement on MAE
and 5.37% (0.093 → 0.088) improvement on MSE on
ETTh2 against Informer when prediction length is 24. For
ETTh1 and ETTm1 dataset, MATVN surpasses Autoformer
by 43.13% on MAE in average when prediction length is
24, 33.46% on MSE in average when prediction length is
48. MATVN also beats other baselines on ECL and Weather
datasets. We credit MATVN’s remarkable inference perfor-
mance regardless of prediction length to the adaptivewindow
setting, which increases the network’s flexibility in adapting
to and adequately capturing time series dependencies.

Multivariate results Of note, our proposed MATVN can
easily transform univariate time series forecasting into amul-
tivariate one by adjusting the last layer. With regard to the

multivariate setting, MATVN exhibits consistent strong per-
formance on all benchmark datasets and all prediction length
settings, as shown in Tables 3 and 4. For example, MATVN
yields 30.37% averaged relative MSE reduction on ETT*
datasets when prediction length is 24 and makes 35.23%
averaged relativeMSE reduction onETT*datasetswhen pre-
diction length is 48 compared to suboptimal results. On the
ECL and Weather datasets, MATVN makes 30.27% MAE
reduction in average when prediction length is 48, 11.50%
MAE reduction in average when prediction length is 168,
and 4.89%MSE reduction in average when prediction length
is 336. From the above experimental results, we can ana-
lyze that compared to the single-scale sequence modeling
way or fixed-scale sequence modeling way, the multi-scale
adaptive sequence modeling way allows the model to better
adapt to themulti-scale variations of the data, providingmore
accurate, comprehensive and flexible analysis and prediction
results. This is mainly due to the fact that multi-scale adap-
tive sequence modeling way allows the model to adjust and
choose the appropriate scale according to the different char-
acteristics of the data and the needs of the problem. Making
the proposed algorithm highly flexible in data analysis and
model construction.

4.5.1 Complexity analysis

Our current implementation of MMA involves introducing
a mask matrix to the canonical MSA. As we all know, a
time series tensor X1:t = [X1, X2, · · · , Xt] ∈ R

B×L×din is
first linearly converted to Q, K and V , resulting in 3Ld2in
computations. Subsequently, as shown in (2) and (3), matrix
multiplication between Q and K yields computational com-
plexity L2din , further followed by multiplying the outcome
with matrix V to achieve computational complexity L2din .
Therefore, the overall complexity of canonicalMSAamounts
to 3Ld2in+2L

2din . As shown in (14), the extra computa-
tions caused by MMA stem from incorporation of the mask
matrix. As a result, the model’s complexity transforms into
3Ld2in+(2din + 1)L2.

123

Multi-scale adaptive attention-based time-variant neural...

Fig. 6 Comparison of training
loss curves between MATVN
and other Transformer-based
models on ETTh1 datasets

Epoch

2 4 6 8 10

0.45

0.40

0.35

0.30

0.25

0.20

0.15
T
ra
in
in
g
L
o
ss

Reformer

Autoformer

LogTrans

Informer+

Informer

MATVN

Drawing upon the above derivation, the newly proposed
MMA does not increase the complexity greatly compared
with the canonical MSA. But it’s worth noting that MMA
is able to adjust fixed-size attention scope to an adaptive-
size proper one for each token in time series. Well-suited
window size can preserve crucial local structures, leading to
enhanced efficiency in feature learning. As a result, MMA
makes MATVN achieve faster learning speed. We draw the
training loss curves for bothMATVNand other Transformer-
based baseline models in Fig. 6. It is observed that during the
first few epochs, the training loss of MATVN exhibits faster
convergence and lower training error. The comparisons of the
number of free parameters and computational cost are also
summarized in Table 5. From it we can see that MATVN
has the lowest number of free parameters and computational
cost.

4.6 Ablation studies

In this section, we further conduct ablation studies and inves-
tigate the effectiveness of key components of MATVN.
IsTime-Variant architecture necessary? To emphasize the
ability of Time-variant model to adapt to dynamic changes in
time series better than Time-invariant model, we plot some

forecasts of MATVN and LSTMa in Fig. 7. It illustrates that
MATVN performs better than LSTMa in predicting wave
peaks and troughs at the beginning. In addition, we found
that MATVN is also capable of making very accurate long-
term prediction. It can capture irregular inflection points
more effectively than LSTMa can. To compare with LSTMa,
our model offers better prediction in the central region, and
prediction series is more fluid. These findings demonstrate
that MATVN is capable of capturing the irregular dynamic
changes in real-world sequences and making accurate pre-
diction.
What is the effect of the number of encoder layers
of MMA module on the prediction? Stacking multiple
encoder layers can improve prediction performance. The
line plotted in Fig. 8 shows that the model’s performance
improves significantly as the number of encoding layers
increases. Excessive encoder layers, however, will result in
over-fitting. In our experiment, the forecasting performance
of MATVN is best with two encoder layers when the length
of the input is less than 96, and its forecasting performance
reaches the best with three encoder layers when the input
length is greater than 96.
How does the feature extractor E() affect results? The
sub-network can learn the offset for each token. In contrast

Table 5 Comparison of number of free parameters and computational cost between our proposed model and other Transformer-based models

Methods Reformer LogTrans Informer Informer+ Autoformer MATVN

Free Parameters 8683.52k 10045.23k 11328.00k 11330.055k 10535.94k 8626.44k

Computational Cost 20002.11M 19532.21M 17404.53M 17435.26M 29516.39M 356.92M

123

G. Changxia et al.

0

-1.1

-1.2

-1.3

-1.4

-1.5

-1.6

-1.1

-1.2

-1.3

-1.4

-1.5

-1.6

0 50 100 150 200 250 300 0 50 100 150 200 250 300

Fig. 7 The long-term prediction performance of LSTMa and MATVN on the ETTm1 dataset

to the fixed-window of each token, the offset is predicted to
shift the fixed-window towards more important regions so
that better maintaining local structures, which facilitates our
model to performprediction.When the offset is not predicted,
the window assigned to each token is fixed, which is the
same as the multi-scale self-attention mechanism. Table 6
illustrates how this offset factor influences our model, and
from itwe can see that predicting offsets can improve 6.799%
(MAE) and 5.836% (MSE) averagely above fixed-window
settings, which verifies that offsets are critical for our model.
How is the offset generated? As we have stated, the off-
set is generated by a sub-network that consumes the query
features and outputs the offset values of the fixed-window.
As depicted in Fig. 9, we implement the sub-network as two
linear layers with a nonlinear activation. The input features
are first passed through two linear layers to capture features
(dm is the transformed dimension after the first linear layer).
Then, a sigmoid activation is adopted to get the offsets.
What WindowSize and Group should be configured? In
Tables 7 and 8, we conduct experiments to investigate the

Fig. 8 The effect of the number of encoder layers on Multivariate pre-
diction performance of our MATVN on the ETTh1 dataset with input
length of {48, 96,168,336}, respectively

effects of WindowSize and Group on the prediction perfor-
mance of three datasets. Performance is initially improved
by increasing the WindowSize win1, but further increasing
it leads to performance degradation. To analyze this result,
we consider the extreme case in which win1 equals to L ,
excessive global noise will be introduced. In the opposite
extreme, if win1 is set extremely small, the model loses sen-
sitivity to local dependencies.After determiningwin1,we set
win2 = 2win1, win3 = 3win1,..., in our design. The more
groups, the more scales we can capture. Our selection, i.e.,
Group = 3, is the most robust strategy considering perfor-
mance and time efficiency.

5 Conclusion

In this research, we propose a novel methodology named
MATVN. It breaks the traditional time-invariant modeling
way, such as CNNs-based and RNNs-based approaches.
Because of the design of its time-variant architecture,
MATVN can capture irregular fluctuations more sensi-
tively and achieve outstanding performance compared to the
above two types of approaches. Based on the time-variant
capability-building ofMATVN, we further capitalize on pro-
posed MMDmodule for extracting time series dependencies

Table 6 The effect of offsets on Multivariate prediction performance
of our MATVN on three datasets with input length of 48

Offsets � �
Improvement(%)

MAE MSE MAE MSE MAE MSE

ETTh1 0.455 0.337 0.417 0.314 8.351 ↑ 6.824 ↑
ETTh2 0.387 0.265 0.364 0.247 5.943 ↑ 6.792 ↑
ETTm1 0.296 0.167 0.280 0.159 5.405 ↑ 4.790 ↑
ECL 0.168 0.048 0.152 0.046 9.523 ↑ 4.166 ↑
weather 0.335 0.348 0.319 0.325 4.776 ↑ 6.609 ↑

123

Multi-scale adaptive attention-based time-variant neural...

Fig. 9 It illustrates the structure of offset generation network

from different pre-defined scale ranges to boost the model’s
ability to mine multi-scale information of time series from
multiple perspectives. Finally, we design a MMA module,
which introduces a newAdaptiveWindow-awareMask strat-
egy intoMMDmodule to improve the ability of our proposed
model to adaptively learn different attention range represen-
tations for different tokens in time series, and successfully
enhance the flexibility of themodel.We demonstrate through
a series of experiments that the proposed method delivers
significant performance gains over classical techniques and
achieves strong competitiveness when compared to state-of-
the-art deep learning models. However, we think that the

Table 7 The effect of different WindowSizes on Univariate prediction
performance of our MATVN on three datasets in terms of MSE with
input length of 48

WindowSize (win1) ETTh1 ETTh2 ETTm1 ECL Weather

L / 12 0.041 0.113 0.027 0.205 0.167

L / 8 0.039 0.109 0.025 0.203 0.162

L / 6 0.037 0.108 0.023 0.201 0.161

L / 4 0.042 0.112 0.026 0.206 0.163

L / 3 0.045 0.114 0.028 0.207 0.166

Table 8 The effect of different Groups on Multivariate prediction per-
formance of our MATVN on three datasets in terms of MAE with input
length of 48

Group ETTh1 ETTh2 ETTm1 ECL Weather

1 0.427 0.369 0.291 0.159 0.322

2 0.423 0.366 0.285 0.156 0.320

3 0.417 0.364 0.280 0.152 0.319

4 0.419 0.367 0.281 0.154 0.325

5 0.421 0.372 0.283 0.155 0.326

offset generation network in MMA should be improved.
Specifically, the architecture of offset generation network is
based on a simple two-layers feed-forward neural network,
which lacks flexibility. Therefore, in the future, we should
skillfully construct and optimize the offset generation net-
work so that we can better predict the precise window offset
for each token in the sequence to better retain the multi-scale
local features and provide more accurate prediction results.

Acknowledgements This research was supported byNational Key R&
DProgram for theCore Technology of Innovation andEntrepreneurship
based on AI under Grant 2019YFB1405202.

Data Availability We use real-world datasets that are collected by [45].

Declarations

Conflicts of interest The authors have no relevant financial or non finan-
cial interests to disclose.

References

1. XuC, ZhangA,XuC, ChenY (2022) Traffic speed prediction: spa-
tiotemporal convolution network based on long-term, short-term
and spatial features. Appl Intell 52(2):2224–2242

2. Banerjee S, Lian Y (2022) Data driven covid-19 spread predic-
tion based on mobility and mask mandate information. Appl Intell
52(2):1969–1978

3. Peng Y, Gong D, Deng C, Li H, Cai H, Zhang H (2022) An auto-
matic hyperparameter optimization DNN model for precipitation
prediction. Appl Intell 52(3):2703–2719

4. Taieb S, Bontempi G, Atiya A, Sorjamaa A (2011) A review and
comparison of strategies for multi-step ahead time series forecast-
ing based on the nn5 forecasting competition. Expert Syst Appl
39(8):7067–7083

5. Box G, Jenkins G (1976) Time series analysis: Forecasting and
control (2nd ed)

6. Guin A (2006) Travel time prediction using a seasonal autore-
gressive integrated moving average time series model. In: IEEE
Intelligent Transportation Systems Conference 493–498

7. NawazM, FournierViger P, ShojaeeA, FujitaH (2021)Using artifi-
cial intelligence techniques for COVID-19 genome analysis. Appl
Intell 51(5):3086–3103

8. Rumelhart D, Hinton G, Williams R (1986) Learning representa-
tions by back-propagating errors. Nature 323(6088):533–536

123

G. Changxia et al.

9. Acharya U, Fujita H, Oh S, Hagiwara Y, Tan J, Adam M, Tan
R (2019) Deep convolutional neural network for the automated
diagnosis of congestive heart failure using ECG signals. Appl Intell
49(1):16–27

10. Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez
A, Polosukhin I (2017) Attention is all you need. In: Advances in
neural information processing systems 6000–6010

11. Dabrowski J, Zhang Y, Rahman A (2020) A time-variant deep
feed-forward neural network architecture formulti-step-ahead time
series forecasting. In: International Conference onNeural Informa-
tion Processing 579–591

12. Oh J, Wang J, Tang S, Sjoding M, Wiens J (2019) Relaxed param-
eter: sharing Effectively modeling time-varying relationships in
clinical time-series. PMLR 27–52

13. Kag A, Saligrama V (2021) Training recurrent neural networks via
forward propagation through time. In: International Conference on
Machine Learning 139:5189–5200

14. Yue X, Zhang C, Fujita H, Lv Y (2021) Clothing fashion style
recognition with design issue graph. Appl Intell 51(6):3548–3560

15. LeCun, Y., Bengio, Y.: Convolutional networks for images, speech,
and time series. The handbook of brain theory and neural networks
3361(10) (1995)

16. Gao C, Zhang N, Li Y, Bian F, Wan H (2022) Self-attention-based
time-variant neural networks for multi-step time series forecasting.
Neural Comput Appl 34(11):8737–8754

17. Michael, M.: Induction of multiscale temporal structure. In:
Advances in neural information processing systems, 275–282
(1991)

18. Wang M, Deng Z (2018) Densely connected cnn with multi scale
feature attention for text classification. In: International Joint Con-
ference on Artificial Intelligence 4468–4474

19. Zhang Z, Zhao T, Gay H, Zhang W, Sun B (2021) Weaving atten-
tion u-net: A novel hybrid CNN and attention-based method for
organs-at-risk segmentation in head and neck CT images. Med
Phys 48(11):7052–7062

20. MaQ, Yan J, Lin Z, Yu L, Chen Z (2021) Deformable self-attention
for text classification. Trans Audio Speech Lang Process 29:1570–
1581

21. Guo Q, Qiu X, Liu P, Xue X, Zhang Z (2020) Multi scale self-
attention for text classification. In: Association for the Advance-
ment of Artificial Intelligence 34(5):7847–7854

22. ShenT, ZhouT, LongG, Jiang J, Pan S, ZhangC (2018)Directional
self-attention network for rnn/cnn-free language understanding.
In: Association for the Advancement of Artificial Intelligence 32(
1):5446–5455

23. Li S, Jin X, Xuan Y, Zhou X, Chen W, Wang Y, Yan X (2019)
Enhancing the locality and breaking the memory bottleneck of
transformer on time series forecasting. In: Neural Information Pro-
cessing Systems 32:5244–5254

24. LiY, ZhangK,Cao J, Timofte R,VanGL (2021) Localvit: Bringing
locality to vision transformers. In: Conference on Computer Vision
and Pattern Recognition. arXiv:2104.05707

25. Hajirahimi Z, KhasheiM (2023) Hybridization of hybrid structures
for time series forecasting: a review. Artif Intell Rev 56(2):1201–
1261

26. Wu Y, Zhao X, Li Y, Guo L, Zhu X, Fournier-Viger P, Wu X
(2022) OPR-Miner: Order-preserving rule mining for time series.
arXiv:2209.08932

27. Chen H, Rossi RA, Mahadik K, Kim S, Eldardiry H (2023) Graph
deep factors for probabilistic time-series forecasting. ACM Trans
Knowl Discov Data 17(2):26–12630

28. Ilhan F, Karaahmetoglu O, Balaban I, Kozat S (2021) Markovian
rnn: An adaptive time series prediction network with hmm-based
switching for nonstationary environments. IEEE Trans Neural
Netw Learn Syst, 1–14

29. CirsteaR,KieuT,GuoC,YangB, Pan S (2021) Enhancenet: Plugin
neural networks for enhancing correlated time series forecasting.
In: International Conference on Data Engineering 1739–1750

30. Bai S, Kolter J, Koltun V (2018) An empirical evaluation of
generic convolutional and recurrent networks for sequence model-
ing. arXiv:1803.01271

31. Liu S, Ji H, Wang M (2020) Nonpooling convolutional neural net-
work forecasting for seasonal time series with trends. IEEE Trans
Neural Netw Learn Syst 31(8):2879–2888

32. Tang W, Long G, Liu L, Zhou T, Blumenstein M (2022) Omni-
scale cnns: a simple and effective kernel size configuration for
time series classification. In: International Conference on Learning
Representations

33. Choromanski K, Likhosherstov V, Dohan D, Song X, Gane A,
Sarlos T, Hawkins P, Davis J, Mohiuddin A, Kaiser L, Belanger D,
Colwell L, Weller A (2021) Rethinking attention with performers.
In: International Conference on Learning Representations

34. Fan Z, Liu Z, Wang A, Nazari Z, Zheng L, Peng H, Yu P (2022)
Sequential recommendation via stochastic self-attention. In: Pro-
ceedings of the ACM Web Conference 2036–2047

35. Lin Y, Koprinska I, Rana M (2021) Ssdnet: State space decompo-
sition neural network for time series forecasting. In: International
Conference on Data Mining 370–378

36. Wu H, Xu J, Wang J, Long M (2021) Autoformer: Decomposition
transformerswith auto-correlation for long-term series forecasting.
In:Advances inNeural InformationProcessingSystems 34:22419–
22430

37. Wu N, Green B, Ben X, Banion S (2020) Deep transformer mod-
els for time series forecasting: The influenza prevalence case.
arXiv:2001.08317

38. Zhou T, Ma Z, Wen Q, Wang X, Sun L, Jin R (2020) Fedformer:
Frequency enhanced decomposed transformer for long-term series
forecasting. In: International Conference on Machine Learning.
arXiv:2201.12740

39. Shih SH, Tsokos CP (2008) A weighted moving average process
for forecasting. J Mod Appl Stat Meth 7(1):15

40. Oppenheim A, Schafer R, Buck J (2009) Pearson education signal
processing series. Discrete-time signal processing (2nd ed)

41. Bahdanau K, Cho D, Bengio Y (2015) Neural machine translation
by jointly learning to align and translate. In: International Confer-
ence on Learning Representations.arXiv:1409.0473

42. Salinas D, Flunkert V, Gasthaus J, Januschowski T (2022) Deepar:
Probabilistic forecasting with autoregressive recurrent networks.
Int J Forecasting 36(3):1181–1191

43. Bai S, Kolter J, Koltun V (2018) An empirical evaluation of
generic convolutional and recurrent networks for sequence model-
ing. arXiv:1803.01271

44. Liu S, Ji H, Wang M (2020) Reformer: The efficient trans-
former. In: International Conference on Learning Representations.
arXiv:2001.04451

45. Zhou H, Zhang S, Peng J, Zhang S, Li J, Xiong H, ZhangW (2021)
Informer: Beyond efficient transformer for long sequence time-
series forecasting. In:Association for theAdvancement ofArtificial
Intelligence 35(12):11106–11115

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such
publishing agreement and applicable law.

123

http://arxiv.org/abs/2104.05707
http://arxiv.org/abs/2209.08932
http://arxiv.org/abs/1803.01271
http://arxiv.org/abs/2001.08317
http://arxiv.org/abs/2201.12740
http://arxiv.org/abs/1803.01271
http://arxiv.org/abs/2001.04451

	Multi-scale adaptive attention-based time-variant neural networks for multi-step time series forecasting
	Abstract
	1 Introduction
	2 Related work
	3 Methodology
	3.1 Preliminary
	3.2 Overall framework
	3.3 Time-variant architecture
	3.4 Loss function.

	4 Experiment
	4.1 Data description
	4.2 Baseline Methods
	4.3 Settings
	4.4 The Performance of Time-Variant Architecture
	4.5 The performance of multi-scale adaptive sequence modeling
	4.5.1 Complexity analysis

	4.6 Ablation studies

	5 Conclusion
	Acknowledgements
	References

