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ABSTRACT
To effectively explore the supply chain relationships among Small
and Medium-sized Enterprises (SMEs), some remarkable progress
in such a relation modeling problem, especially knowledge graph-
based methods have been witnessed during these years. As a typical
link prediction task, supply chain prediction can usually predict
the unknown future relationship facts between SMEs by utilizing
the historical semantic connections between entities in knowledge
graphs (KGs). However, it is still a great challenge for existing mod-
els as seldom of them can consider both temporal dependency and
cooperative correlation of the connectivity pattern along the time-
line synergistically. Accordingly, we propose a novel framework
to learn joint relational co-evolution in Spatial-Temporal Knowl-
edge Graphs (STKG). Specifically, on the base of the constructed
large-scale financial STKG, a multi-view relational sequences min-
ing method is proposed to reveal the semantic information from
ontological concepts. Furthermore, a relational co-evolution learn-
ing module is also developed to capture the regularity of evolving
connectivity patterns from the spatial-temporal view. Meanwhile, a
multiple random subspace representation learning layer is also de-
signed to improve both compatibility and complementarity during
knowledge aggregation. Experimental results on large-scale SMEs
supply chain prediction tasks from four real-world industries in
China have illustrated the effectiveness of the proposed model.
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1 INTRODUCTION
During these years, supply chain systems have played an impressive
part in the digital economy [45], leading to a significant contribu-
tion in multiple areas [4, 25, 26]. For instance, with the help of
supply chain networks, enterprises can improve their production
and operation efficiency [22], and banks can clarify the operational
relationship between enterprises, so as to grant credits more accu-
rately and provide financing assistance in a more targeted manner
[11]. However, these promising practices are mostly experienced by
large enterprises, but rarely reach Small and Medium Enterprises
(SMEs). In fact, it is rather challenging to accurately predict the
supply chain relationships between SMEs due to their large base,
unstable business status, less available information, and many other
objective reasons [1].

Fortunately, Graph Neural Networks (GNNs) [13, 16, 31, 42]
techniques are constantly improving the performance in modeling
relational data, and especially knowledge graph-based methods
are delivering excellent results in many real-world scenarios [7,
10, 19, 37], which all provide us with the experience to explore
the supply chain relationships among SMEs. However, it is still a
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Figure 1: An example of the supply chain relationships
among SMEs in the manufacturing industry.

great challenge for these existing models as they hardly consider
the dynamics of SMEs relationships along the timeline [17, 20].
For example, Fig. 1 highlights the relationship paths for small- and
medium-sized manufacturing enterprises in different years with
different colors. We can see clearly that as the ‘XXX’ Metal Products
Co. Limited was removed from the original path (in blue), a new
supply chain path took shape over time (in red). As a matter of
fact, the real supply chain relationships among SMEs can change
more profoundly than that, which reflects the necessity of modeling
temporal dependency in supply chain relationships.

The cooperative correlation among the supply chain relation-
ships should also be noted. Generally, plural connection paths exist
between two given entities in a large-scale interconnected knowl-
edge graph, through which multiple semantic information is con-
veyed [27]. In practice, these path connectivity patterns can be
concluded to make supply chain prediction more accurate [6, 24].
Besides, the plural geographical distribution of supply chains result-
ing from the uneven regional economic development and diverse
industrial structures means that geographical information of SMEs
should also be considered in supply chain prediction [29]. For these,
a common characteristic is that different factors are often influ-
enced by or correlated with others [39]. Thus, both the temporal
dependency along the timeline and the cooperative correlation
between the plural connection paths should be considered syner-
gistically. Given these concerns, the following challenges remain
to be addressed.
• CHALLENGE 1: How to explicitly describe the plural rela-
tionships in the supply chain so as to capture their inherent
connectivity pattern from the spatial-temporal view?
• CHALLENGE 2: How to jointly model both temporal depen-
dency and cooperative correlation in the supply chain so as
to learn the regularity of evolution for such spatial-temporal
connectivity patterns?
• CHALLENGE 3: How to adequately coordinate the coupling
between temporal dependency and cooperative correlation
so as to aggregate multi-view semantic information?

To this end, we provide a new perspective for SMEs supply
chain prediction by learning joint relational co-evolution in the
spatial-temporal knowledge graph. In summary, our contributions
are highlighted as follows:

• To effectively organize the multiple financial relationships
among millions of SMEs, we constructed a large-scale finan-
cial Spatial-Temporal Knowledge Graph (STKG).
• To reveal the semantic information embedded in the con-
structed large-scale financial STKG, we proposed a multi-
view relational sequence encoding method for more exten-
sive relation exploring.
• To consistently capture the evolution regularity of supply
chain connectivity patterns, we developed a relational co-
evolution learning module for jointly modeling the multi-
view semantic information from the spatial-temporal view.
• To better disentangle the evolution of connectivity patterns
from different views, we designed a multiple random sub-
spaces layer for knowledge aggregation.

Moreover, to evaluate the performance of models, we build four
large-scale SMEs supply chain prediction datasets from real-world
industries in China and the experimental results demonstrate the
effectiveness of the proposed JRCL.

2 RELATEDWORK
In this section, we will review and discuss the existing work on
the general practices of KG-based recommendation systems and
temporal knowledge graphs.

2.1 KG-based Recommendation Systems.
With knowledge graphs being treated as side information, more
and more KG-based recommendation systems have been developed
to better address the challenges of data sparsity and cold start in
real-world applications. Generally, they are mainly categorized
into embedding-based methods [43], propagation-based methods
[32], GNNs-based methods [33–35] and connection-based methods
[28, 36]. Compared to the existing deep learning-based methods,
they can utilize the knowledge graph for not only obtaining accurate
recommendations but also providing explanations [7]. As a similar
link prediction task, they are also considered a feasible manner to
predict supply chain relationships between SMEs. However, unlike
the factual relationships between items in recommendation systems,
the financial events from SMEs are valid only in certain moments
or within a range of time, which brings more challenges.

2.2 Temporal Knowledge Graphs.
To effectively capture the dynamics of facts along the timeline in
KGs, some temporal knowledge graphs-based modeling methods
are raised during the past several years [2]. In general, to better
predict the past missing facts or unknown future facts, most prior
efforts improved existing knowledge graph embedding technologies
designed for static knowledge graphs by embedding the temporal
information in various manners [12, 18, 23, 44]. Although they
can learn the evolutional representations of entities and relations
at each timestamp through the knowledge graph structures with
historical dependencies [15, 17], such performance is not sufficient
as they ignore learning the co-evolution of connectivity pattern and
temporal semantic information. Moreover, it is worth noting that
supply chain prediction is a binary relation classification problem,
while existing temporal knowledge graphs reasoning methods are
almost designed for multi-label prediction.
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3 PRELIMINARIES
3.1 Notations and Definitions
To facilitate the elaboration of the KG-based SMEs supply chain
prediction, we give some notations in Table 1.

SMEs Supply Chain Relationships. Let 𝐸 = {𝑒1, 𝑒2, . . . , 𝑒 |𝐸 | }
denote a set of SMEs. For a given historical time window 𝜏 =

[𝑇 − 𝜏 + 1,𝑇 ], their supply chain relationships can be defined as
𝑅 = {𝑟𝑒𝑖 ,𝑒 𝑗 ∈ {0, 1, ∅}}𝑖, 𝑗=1,2,..., |𝐸 | , where | · | denotes the volume of
a set. Particularly, for two SMEs 𝑒𝑖 and 𝑒 𝑗 , 𝑟𝑒𝑖 ,𝑒 𝑗 = 1 (positive) or
0 (negative) denotes whether a supply chain relationship between
them or not, whereas 𝑟𝑒𝑖 ,𝑒 𝑗 = ∅ means an unknown relationship.
In addition, the basic information 𝐵 = {𝑏1, 𝑏2, . . . , 𝑏 |𝐸 | } for each
enterprise 𝑒𝑖 ∈ 𝐸 (e.g., industry, scale, etc.) is also given. Here,
we only consider the setting of each attribute in 𝐵 as a discrete
categorical variable, while the continuous real-valued one will be
pre-processed into a discrete categorical variable by binning.

Spatial-Temporal Knowledge Graph.1 As a special type of
KG, the STKG G can be defined as a sequence of statics KG slices
G = {G𝑇−𝜏+1, . . . ,G𝑇−1,G𝑇 }. For each slice G𝑡 at 𝑡 , similar to the
statics KG, we let E𝑡 =

{
𝑒𝑡1, 𝑒

𝑡
2, . . . , 𝑒

𝑡
| E𝑡 |

}
and 𝜙 : E𝑡 → A𝑡 denote

the sets of entities and an entity typemapping function, respectively,
where A𝑡 = {𝑎𝑡

𝑖
}, 𝑖 = 1, · · · , |A𝑡 |, is the entity type set, such as

enterprise, natural person, location and industry, etc. It is worth
noting that the SMEs set 𝐸 is indeed a subset of the entity set E𝑡 ,
i.e., 𝐸 ⊆ E𝑡 . Similarly, we also denote R𝑡 = {𝑟𝑡

𝑒𝑖 ,𝑒 𝑗
}𝑖, 𝑗=1,2,..., | E𝑡 |

and 𝜓 : L𝑡 → R𝑡 as the sets of relations and a relation type
mapping function, respectively, where each one-hop link 𝑙𝑡

𝑒𝑢 ,𝑒𝑣
∈

L𝑡 connecting two entities 𝑒𝑢 , 𝑒𝑣 of G𝑡 can be mapped to a certain
type of relation 𝜓 (𝑙𝑡

𝑒𝑢 ,𝑒𝑣
) = 𝑟𝑡

𝑒𝑢 ,𝑒𝑣
. Then, the STKG slice can be

defined as a directed graph G𝑡 = (E𝑡 ,R𝑡 ).
Task Definition.Given the historical supply chain relationships

𝑅, the basic information 𝐵 and the STKG G, we aim to predict
whether the enterprise 𝑒𝑖 will have any supply chain relationships
with 𝑒 𝑗 at future time 𝑇 + 1:

𝑦𝑇+1𝑖, 𝑗 = FΘ (< 𝑒𝑖 , 𝑒 𝑗 > |𝑅, 𝐵,G), (1)

where F (·) denotes the underlying model with parameters Θ that
we need to learn, and𝑦𝑇+1

𝑖, 𝑗
means the predicted probability of supply

chain relationships between enterprise 𝑒𝑖 and 𝑒 𝑗 at 𝑇 + 1.

3.2 Model Overview
Fig. 2 has shown a running example of the proposed JRCL, and its
framework mainly consists of three modules:
(a) Multi-view Relation Sequences Mining (MvR). It aims to

reveal the semantic information encoded in the constructed
large-scale financial STKG more extensively;

(b) Relational Co-evolution Learning (CoEvo). To capture the
regularity of both temporal dependency and cooperative correla-
tion in connectivity patterns evolving, a relational co-evolution
learning module is also developed;

(c) Multiple Random Subspaces (MRS). As a representation
refining layer, the MRS is designed for aggregating knowledge
and making the final prediction.

1More details about the STKG are given in the Appendix A.2

Table 1: Notation and description

Notation Description
𝐸 = {𝑒𝑖 } The set of |𝐸 | SMEs

𝑅 = {𝑟𝑒𝑖 ,𝑒 𝑗 } The supply chain relationships set
𝐵 = {𝑏𝑖 } The set of |𝐸 | basic information
E𝑡 = {𝑒𝑡𝑘 } The set of |E | entities in STKG slice at 𝑡
A𝑡 = {𝑎𝑡𝑖 } The |A𝑡 | entity types set in STKG slice at 𝑡
𝜙 : E𝑡 → A𝑡 The entity type mapping function
L𝑡 = {𝑙𝑡𝑒𝑢 ,𝑒𝑣 } The set of |L𝑡 | links in STKG slice at 𝑡
R𝑡 = {𝑟𝑡𝑒𝑖 ,𝑒 𝑗 } The set of |R𝑡 | relations in STKG slice at 𝑡
𝜓 : L𝑡 → R𝑡 The relation type mapping function
G𝑡 = (E𝑡 ,R𝑡 ) The STKG slice at time 𝑡
G = {G𝑡 } The spatial-temporal knowledge graph
𝑦𝑇+1
𝑖, 𝑗

, 𝑦𝑇+1
𝑖, 𝑗

The ground truth and predicted labels for
SMEs pair < 𝑒𝑖 , 𝑒 𝑗 > at 𝑇 + 1

4 METHODOLOGY
4.1 Multi-view Relation Sequences Mining
Multi-view relation sequences in knowledge graph paths jointly
represent two components: a semantic view from ontological con-
cepts, and a geographical view of specific entities.

4.1.1 Semantic-view Relation Sequence. The ontological con-
cepts in STKG clearly outline direct or indirect connectivity pat-
terns between SMEs, which shall constitute one or several KG
paths [38]. To better encode these connectivity patterns, we extract
the 𝐾-shortest paths from STKG by using [41] as the semantic-
view relation sequence (SenRS). For the 𝑡-th slice in STKG, we
formally define the set of KG paths (a.k.a. semantic-view rela-
tion sequences) connecting 𝑒𝑖 and 𝑒 𝑗 as 𝑃𝑡𝑖, 𝑗 and the 𝑘-th path
𝑝𝑡
𝑖, 𝑗
|𝑘 ∈ 𝑃𝑡𝑖, 𝑗 , 𝑘 = 1, . . . , 𝐾 is a set of sequence of entities and re-

lations. To be specific, taking a given 𝑘-th path as an example,
𝑝𝑡
𝑖, 𝑗
|𝑘 = {𝑒𝑖 ,𝜓 (𝑙𝑡𝑒𝑖 ,𝑒𝑢 ), 𝑒

𝑡
𝑢 , . . . , 𝑒

𝑡
𝑣,𝜓 (𝑙𝑡𝑒𝑣 ,𝑒 𝑗 ), 𝑒 𝑗 }. By seeing these enti-

ties or relations ID in 𝑃𝑡
𝑖, 𝑗

as sequences of words in sentences [21]
and following the formulations 𝐹Θ1 (·) given in [14], we can embed
each path 𝑝𝑡

𝑖, 𝑗
|𝑘 in 𝑃𝑡

𝑖, 𝑗
and sum them into 𝐸 (𝑃𝑡

𝑖, 𝑗
) ∈ R𝐾×𝑑 .

4.1.2 Geographical-view Relation Sequence. The uneven re-
gional economic development and diverse industrial structures
mean that the geographical information should also be considered
in supply chain prediction. However, it is hard to capture such geo-
graphical relationships between enterprises in an explicit manner.
Fortunately, in the constructed STKG, each entity has been linked
with a unique location entity, and it provides a possible way to ad-
dress this issue. To effectively reveal the geographical connectivity
patterns between the SMEs 𝑒𝑖 and 𝑒 𝑗 in STKG at time 𝑡 , with the
extracted KG paths 𝑃𝑡

𝑖, 𝑗
, we define geographical relation sequence

(GeoRS) as 𝐿𝑜𝑐𝑡
𝑖, 𝑗
. To be specific, for each SenRS 𝑝𝑡

𝑖, 𝑗
|𝑘 ∈ 𝑃𝑡𝑖, 𝑗 , we

have the associated 𝑙𝑜𝑐𝑡
𝑖, 𝑗
|𝑘 = {𝑙𝑜𝑐𝑡

𝑖
, 𝑙𝑜𝑐𝑡𝑢 , . . . , 𝑙𝑜𝑐

𝑡
𝑣, 𝑙𝑜𝑐

𝑡
𝑗
}, where the

entities such as 𝑙𝑜𝑐𝑡𝑢 , 𝑙𝑜𝑐𝑡𝑣 ⊆ E𝑡 denotes the corresponding location
entity in the 𝑡-th slice of STKGG𝑡 and links with the original entities
in SenRS 𝑒𝑡𝑢 and 𝑒𝑡𝑣 . Similarly, with the given formulations in 𝐹Θ1 (·),
we can also embed each 𝑙𝑜𝑐𝑡

𝑖, 𝑗
|𝑘 in 𝐿𝑜𝑐𝑡

𝑖, 𝑗
into 𝐸 (𝐿𝑜𝑐𝑡

𝑖, 𝑗
) ∈ R𝐾×𝑑 .
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Figure 2: Graphical illustration of learning joint relational co-evolution in spatial-temporal knowledge graph for SMEs supply
chain prediction. It is mainly composed of three modules: (a) Multi-view Relation Sequences Mining (MvR); (b) Relational
Co-evolution Learning (CoEvo); (c) Multiple Random Subspaces (MRS).

4.2 Relational Co-evolution Learning
4.2.1 Cooperative Correlation Refining. The common charac-
teristic for multiple sequences is that different sequences are often
inherently inter-connected or correlated with each other [39]. For
example, the SMEs in different semantic-view relation sequences
are correlated since there exist competition and cooperation rela-
tionships among them. To be more specific, for both semantic-view
and geographical-view relation sequences 𝑃𝑡

𝑖, 𝑗
and 𝐿𝑜𝑐𝑡

𝑖, 𝑗
at time 𝑡 ,

the cooperative correlation among each individual sequence 𝑝𝑡
𝑖, 𝑗
|𝑘

and 𝑙𝑜𝑐𝑡
𝑖, 𝑗
|𝑘 should be well explored. Furthermore, their embedding

𝐸 (𝑃𝑡
𝑖, 𝑗
) ∈ R𝐾×𝑑 and 𝐸 (𝐿𝑜𝑐𝑡

𝑖, 𝑗
) ∈ R𝐾×𝑑 can be fed into a 𝑁𝐻 -head

self-attention network (denoted as 𝐹Θ2 (·)) [30] for correlation-wise
representation refining, respectively. For 𝐸 (𝑃𝑡

𝑖, 𝑗
), we have the re-

fined representation 𝐸′ (𝑃𝑡
𝑖, 𝑗
) ∈ R𝐾×𝑑1 :

𝐸′ (𝑃𝑡𝑖, 𝑗 ) = 𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝐸 (𝑃
𝑡
𝑖, 𝑗 ))

= [𝐸′(1)(𝑃𝑡
𝑖,𝑗
) ⊕ 𝐸

′(2)
(𝑃𝑡

𝑖,𝑗
) . . . ⊕ 𝐸

′(𝑁𝐻 )
(𝑃𝑡

𝑖,𝑗
) ] ·𝑊

𝐻 (2)

where 𝐸′(ℎ)(𝑃𝑡
𝑖,𝑗
) = ℎ𝑒𝑎𝑑 (ℎ) (𝐸 (𝑃𝑡

𝑖, 𝑗
)) ∈ R𝐾×𝑑2 is the learned refined

representations from ℎ-th attention head, ⊕ is the concatenation
operation and𝑊𝐻 ∈ R(𝑑2×𝑁𝐻 )×𝑑1 is a linear projection matrix.

For the ℎ-th ℎ𝑒𝑎𝑑 (ℎ) (𝐸 (𝑃𝑡
𝑖, 𝑗
)), it is given by:

ℎ𝑒𝑎𝑑 (ℎ) (𝐸 (𝑃𝑡𝑖, 𝑗 )) = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (
𝑄
(ℎ)
𝑖, 𝑗
· 𝐾 (ℎ)T
𝑖, 𝑗√

𝑑1
) ·𝑉 (ℎ)

𝑖, 𝑗
, (3)

where {𝑄 (ℎ)
𝑖, 𝑗

, 𝐾
(ℎ)
𝑖, 𝑗

,𝑉
(ℎ)
𝑖, 𝑗
} = {𝐸 (𝑃𝑡

𝑖, 𝑗
) ·𝑊 (ℎ)𝑞 , 𝐸 (𝑃𝑡

𝑖, 𝑗
) ·𝑊 (ℎ)

𝑘
, 𝐸 (𝑃𝑡

𝑖, 𝑗
) ·

𝑊
(ℎ)
𝑣 } with𝑊 (ℎ)𝑞 ,𝑊

(ℎ)
𝑘

,𝑊
(ℎ)
𝑣 ∈ R𝑑×𝑑2 being the globally shared

projection matrices. Meanwhile, for the GeoRS 𝐿𝑜𝑐𝑡
𝑖, 𝑗

at time 𝑡 , the
refined representation 𝐸′ (𝐿𝑜𝑐𝑡

𝑖, 𝑗
) ∈ R𝐾×𝑑1 can be also obtained

with the same formulations in 𝐹Θ2 (·).

4.2.2 Temporal Dependency Modeling. To consistently model
the temporal dependencies in the evolution of supply chain con-
nectivity patterns from 𝑇 − 𝜏 + 1 to 𝑇 , LSTM [8] is employed. In
practice, the refined representations of historical SenRS are flat-
tened as 𝑆𝑝

𝑖,𝑗
= {𝐸′ (𝑃𝑇−𝜏+1

𝑖, 𝑗
), . . . , 𝐸′ (𝑃𝑇−1

𝑖, 𝑗
), 𝐸′ (𝑃𝑇

𝑖,𝑗
)} ∈ R(𝐾×𝑑1 )×𝜏

and fed into an LSTM network 𝐿𝑆𝑇𝑀 (𝑝 ) . Then, we have:

𝐸 (𝑆𝑃𝑖,𝑗 ) = 𝐿𝑆𝑇𝑀
(𝑃 ) (𝐸′ (𝑃𝑇−𝜏+1𝑖, 𝑗 ), . . . , 𝐸′ (𝑃𝑇−1𝑖, 𝑗 ), 𝐸

′ (𝑃𝑇𝑖,𝑗 )), (4)

where 𝐸 (𝑆𝑝
𝑖,𝑗
) ∈ R𝑑 is the learned representation for 𝑆𝑝

𝑖,𝑗
. Similarly,

with another network 𝐿𝑆𝑇𝑀 (𝑙 ) the representation 𝐸 (𝑆𝑙
𝑖, 𝑗
) ∈ R𝑑 for

history of GeoRS 𝑆𝑙
𝑖, 𝑗

can also be learned.
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Algorithm 1 Joint Relational Co-evolution Learning
Require:

𝑅: historical supply chain relationships, 𝐵: basic information of
SMEs, G: spatial-temporal knowledge graph

Ensure:
𝑦𝑇+1
𝑖, 𝑗

: supply chain relationship probability between 𝑒𝑖 and 𝑒 𝑗
1: for 𝑡 ∈ [𝑇 − 𝜏 + 1,𝑇 ] do
2: 𝑃𝑡

𝑖, 𝑗
, 𝐿𝑜𝑐𝑡

𝑖, 𝑗
← 𝑀𝑣𝑅(G𝑡 )

3: for 𝑘 ∈ (1, 2, . . . , 𝐾) do
4: 𝐸 (𝑝𝑡

𝑖, 𝑗
|𝑘 ), 𝐸 (𝑙𝑜𝑐𝑡𝑖, 𝑗 |𝑘 ) ∈ R

𝑑 ← 𝐹Θ1 (𝑝𝑡𝑖, 𝑗 |𝑘 , 𝑙𝑜𝑐
𝑡
𝑖, 𝑗
|𝑘 )

5: end for
6: 𝐸′ (𝑃𝑡

𝑖, 𝑗
), 𝐸′ (𝐿𝑜𝑐𝑡

𝑖, 𝑗
) ∈ R𝐾×𝑑1 ← 𝐹Θ2 (𝐸 (𝑃𝑡𝑖, 𝑗 ), 𝐸 (𝐿𝑜𝑐

𝑡
𝑖, 𝑗
))

7: end for
8: for 𝑡 ∈ [𝑇 − 𝜏 + 1,𝑇 ] do
9: 𝐸 (𝑆𝑝

𝑖,𝑗
), 𝐸 (𝑆𝑙

𝑖, 𝑗
) ∈ R𝑑 ← 𝐿𝑆𝑇𝑀 (𝑝,𝑙 ) (𝐸′ (𝑃𝑡

𝑖, 𝑗
), 𝐸′ (𝐿𝑜𝑐𝑡

𝑖, 𝑗
))

10: end for
11: 𝐸 (𝑏𝑖, 𝑗 ) ∈ R𝑑 ← 𝐷𝑁𝑁 (𝑏𝑖, 𝑗 )
12: 𝐸′ (𝑆𝑝

𝑖,𝑗
), 𝐸′ (𝑆𝑙

𝑖, 𝑗
), 𝐸′ (𝑏𝑖, 𝑗 ) ← 𝑀𝑅𝑆 (𝐸 (𝑆𝑝

𝑖,𝑗
), 𝐸 (𝑆𝑙

𝑖, 𝑗
), 𝐸 (𝑏𝑖, 𝑗 ))

13: 𝑦𝑇+1
𝑖, 𝑗
← 𝑀𝐿𝑃 ( [𝐸′ (𝑆𝑝

𝑖,𝑗
), 𝐸′ (𝑆𝑙

𝑖, 𝑗
), 𝐸′ (𝑏𝑖, 𝑗 )])

4.3 Multiple Random Subspaces
In addition to the evolution patterns 𝐸 (𝑆𝑝

𝑖,𝑗
) and 𝐸 (𝑆𝑙

𝑖, 𝑗
) learned

from different views, the basic information of SMEs should also
be considered in supply chain prediction tasks. For a SMEs pair
< 𝑒𝑖 , 𝑒 𝑗 >, their basic information 𝑏𝑖 and 𝑏 𝑗 can be concatenated as
𝑏𝑖, 𝑗 and mapped into a 𝑑-dimension embedding vector 𝐸 (𝑏𝑖, 𝑗 ) ∈ R𝑑
using a one-layer MLP. However, the inherent couplings among
the multi-information bring challenges to effective knowledge ag-
gregation. Thus, motivated by the original idea of Mixture-of-
Experts (MoE) networks, we design a multiple random subspace
(MRS) representation learning layer [9] for further disentangling
the learned representations 𝐸 (𝑆𝑝

𝑖,𝑗
), 𝐸 (𝑆𝑙

𝑖, 𝑗
) and 𝐸 (𝑏𝑖, 𝑗 ) one by one.

For 𝐸 (𝑆𝑝
𝑖,𝑗
), we project it into 𝑁𝑠 𝑑𝑠 -dimensional subspaces as:

{𝑓𝑛 (𝐸 (𝑆𝑝𝑖,𝑗 )) ∈ R
𝑑𝑠 }𝑛=1,2,...,𝑁𝑠

. For these, we expect that they can
capture connectivity patterns from different aspects, like the expert
networks in the MoE layer. In fact, it is hard to realize this due to
the winner-take-all issue in training. To address it, we randomly
sample a subset of size 𝑁 ′𝑠 from the 𝑁𝑠 subspaces to strengthen
the uncertainty during parameter confirmation. Then, we weight
the representation from 𝑁 ′𝑠 subspaces with an individual gating
network 𝑔𝑝 (·) as:

𝐸′ (𝑆𝑝
𝑖,𝑗
) =

𝑁 ′𝑠∑︁
𝑛=1

𝑔
𝑝
𝑛 (𝐸 (𝑆

𝑝

𝑖,𝑗
)) · 𝑓𝑛 (𝐸 (𝑆𝑝𝑖,𝑗 )), (5)

where 𝑔𝑝 (𝐸 (𝑆𝑝
𝑖,𝑗
)) = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑊 𝑝

𝑔 · 𝐸 (𝑆
𝑝

𝑖,𝑗
)) with trainable weight

matrix𝑊 𝑝
𝑔 ∈ R𝑁

′
𝑠×𝑑𝑠 , and 𝑔𝑝𝑛 (·) ∈ (0, 1) is the 𝑛-th output of the

gating network. Similarly, 𝐸 (𝑆𝑙
𝑖, 𝑗
) and 𝐸 (𝑏𝑖, 𝑗 ) can also be further

refined into 𝐸′ (𝑆𝑙
𝑖, 𝑗
) ∈ R𝑑𝑠 and 𝐸′ (𝑏𝑖, 𝑗 ) ∈ R𝑑𝑠 , respectively. Finally,

the prediction of the supply chain relationship between 𝑒𝑖 and 𝑒 𝑗
at time 𝑇 + 1 can be obtained by using an MLP layer:

𝑦𝑇+1𝑖, 𝑗 = 𝑀𝐿𝑃 ( [𝐸′ (𝑆𝑝
𝑖,𝑗
), 𝐸′ (𝑆𝑙𝑖, 𝑗 ), 𝐸

′ (𝑏𝑖, 𝑗 )]) . (6)

4.4 Model Optimization
Generally, the SMEs supply chain prediction task is defined as a
binary classification problem, and the cross entropy is set as the
loss function,

L𝐶𝑙𝑎𝑠𝑠 = −
©­­«

∑︁
𝑦𝑇+1
𝑖,𝑗
∈𝑅+

log𝑦𝑇+1𝑖, 𝑗 +
∑︁

𝑦𝑇+1
𝑖,𝑗
∈𝑅−

log(1 − 𝑦𝑇+1𝑖, 𝑗 )
ª®®¬ , (7)

in which 𝑅+ and 𝑅− are the samples with positive and negative tar-
get values. In summary, the implementation details of the proposed
JRCL framework are outlined in Algorithm 1.

5 EXPERIMENTAL RESULTS AND ANALYSES
In this section, we perform experiments on four real-world supply
chain prediction datasets to evaluate our proposed method. We aim
to answer the following research questions:
• RQ1: How to set the SMEs supply chain prediction tasks?
• RQ2: How to evaluate the performance of the JRCL?
• RQ3: How does the JRCL perform and why?

5.1 Data Description and Settings (RQ1)
The detailed statistics for the large-scale industrial datasets of the
SMEs supply chain prediction and the constructed financial STKG
collected by MYBank, Ant Group, are given in the appendix A.1-2.
Here is a brief summary.
• SMEs Supply Chain Dataset 2: It includes rich basic pro-
files and facts of supply chain relationships between SMEs
across more than 100 real-world industries such as manufac-
turing, civil engineering, retailing, and wholesaling, etc.
• Ant-MYBank Financial STKG 3: It is a large-scale financial
STKG used to depict financial relationships among millions
of SMEs, covering more than 20 relation types and 4 entity
types, with a total of 90 million entities and 2.8 billion facts.

For SMEs supply chain prediction, more than 15 million ground-
truth relationships are used for model training and evaluation in
civil engineering, manufacturing, retailing, and wholesaling indus-
tries, respectively. We also constructed a large-scale financial STKG
to help explore these supply chain relationships more effectively.

5.2 Experimental Settings (RQ2)
5.2.1 Metrics. We used Accuracy (ACC), the area under the re-
ceiver operating characteristic curve (AUROC), the area under the
precision-recall curve (AUPRC) and the minimum precision and
sensitivity min (Se, P+) to evaluate the performance of models in
SMEs supply chain prediction tasks.

5.2.2 Baselines. We compared the proposed JRCL with some
traditional predictors [3, 5], some recent KG-based recommendation
methods [35, 36] and temporal knowledge graph reasoning models
[15, 40]. Noted, in order to ensure the fairness of the comparison,
we reproduced the results for each baseline with their original
open-source implementations and all the reproduced ones have
been carefully fine-tuned by the grid-searching strategy.

2https://bksupplychain-assets.mybank.cn/
3https://tech.antfin.com/products/TuGraph
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Table 2: Performance comparison (the best is in red and the second is in blue).

Dataset Model
SMEs Supply Chain Prediction (Bootstrapping = 1000)

ACC AUROC AUPRC min(Se, P+)

Civil Eng.

LR [3] 0.7219 ± 0.0161 0.6014 ± 0.0242 0.4027 ± 0.0355 0.4154 ± 0.0319
GBDT [5] 0.7290 ± 0.0167 0.5769 ± 0.0231 0.3659 ± 0.0316 0.3509 ± 0.0288
KGAT [35] 0.7272 ± 0.0163 0.6281 ± 0.0235 0.3920 ± 0.0324 0.4167 ± 0.0298
KGIN [36] 0.7358 ± 0.0166 0.6302 ± 0.0238 0.4043 ± 0.0338 0.4132 ± 0.0318
TiRGN [15] 0.7437 ± 0.0167 0.6403 ± 0.0240 0.4242 ± 0.0359 0.4593 ± 0.0307
ST-GNN [40] 0.7402 ± 0.0162 0.7307 ± 0.0204 0.4808 ± 0.0371 0.5028 ± 0.0310
JRCL 0.8161 ± 0.0143 0.8317 ± 0.0169 0.6607 ± 0.0375 0.6407 ± 0.0283

Manufacturing

LR [3] 0.7223 ± 0.0185 0.5657 ± 0.0297 0.2972 ± 0.0340 0.3251 ± 0.0346
GBDT [5] 0.7645 ± 0.0180 0.5882 ± 0.0273 0.3186 ± 0.0386 0.3099 ± 0.0288
KGAT [35] 0.7650 ± 0.0180 0.6160 ± 0.0274 0.3262 ± 0.0370 0.3440 ± 0.0315
KGIN [36] 0.7479 ± 0.0182 0.6192 ± 0.0303 0.3567 ± 0.0380 0.4057 ± 0.0360
TiRGN [15] 0.7548 ± 0.0186 0.6455 ± 0.0276 0.3605 ± 0.0393 0.3921 ± 0.0370
ST-GNN [40] 0.7658 ± 0.0181 0.7328 ± 0.0247 0.4470 ± 0.0452 0.4375 ± 0.0383
JRCL 0.7680 ± 0.0175 0.7380 ± 0.0256 0.4765 ± 0.0493 0.4733 ± 0.0378

Wholesaling

LR [3] 0.8081 ±0.0158 0.5835 ± 0.0282 0.2311 ± 0.0278 0.2654 ± 0.0317
GBDT [5] 0.8096 ± 0.0156 0.5946 ± 0.0282 0.2788 ± 0.0372 0.2607 ± 0.0323
KGAT [35] 0.8340 ± 0.0148 0.6183 ± 0.0304 0.2403 ± 0.0304 0.2903 ± 0.0326
KGIN [36] 0.8417 ± 0.0144 0.6059 ± 0.0337 0.2926 ± 0.0422 0.3206 ± 0.0392
TiRGN [15] 0.8111 ± 0.0150 0.5992 ± 0.0285 0.2870 ± 0.0362 0.3352 ± 0.0372
ST-GNN [40] 0.8121 ± 0.0152 0.6445 ± 0.0269 0.2830 ± 0.0346 0.3347 ± 0.0388
JRCL 0.8112 ± 0.0153 0.7824 ± 0.0231 0.4469 ± 0.0456 0.5000 ± 0.0399

Retailing

LR [3] 0.7897 ± 0.0180 0.5191 ± 0.0317 0.2137 ± 0.0278 0.2529 ± 0.0355
GBDT [5] 0.8042 ± 0.0175 0.5621 ± 0.0296 0.2515 ± 0.0360 0.2720 ± 0.0421
KGAT [35] 0.8054 ± 0.0180 0.6043 ± 0.0334 0.3059 ± 0.0445 0.3341 ± 0.0408
KGIN [36] 0.8013 ± 0.0179 0.6134 ± 0.0344 0.3166 ± 0.0443 0.3374 ± 0.0421
TiRGN [15] 0.8071 ± 0.0175 0.6557 ± 0.0291 0.3283 ± 0.0453 0.3484 ± 0.0428
ST-GNN [40] 0.8052 ± 0.0169 0.6692 ± 0.0293 0.3196 ± 0.0426 0.3576 ± 0.0404
JRCL 0.8043 ± 0.0175 0.7225 ± 0.0301 0.4561 ± 0.0517 0.2473 ± 0.0028

5.3 Experimental Results and Analyses (RQ3)
5.3.1 Performance Comparison. Table 2 has summarized the
experimental results of performance comparison. Generally, the
JRCL can outperform almost all the state-of-the-art competitors in
four datasets significantly, demonstrating the effectiveness of our
model. To be more specific, we have the following findings:
• As simple predictors, although well-designed features are
given, both plain LR [3] and GBDT [5] performed poorly by
using only the basic information. It shows that it is necessary
to introduce the knowledge graph in order to better handle
such a link prediction task towards relational data.
• The proposed MSCL also outperformed the recent KG-based
recommendationmethods [35, 36]. Overall, the performances
of them are better than plain LR and GBDT with the help of
the knowledge graph. Specifically, as state-of-the-art GNN-
based recommenders, they are developed to model high-
order connectivity and recursively integrate the long-range

relational information between the focused entities in an
end-to-end fashion. However, as the dynamics of facts along
the timeline in KG are not considered, the improvements
remain not sufficient.
• Compared to those static KG-based recommendation meth-
ods, the temporal KG reasoning methods [15] have made
further progress by comprehensively considering the sequen-
tial independence of historical facts along the timeline in
KG. In addition, the spatial-temporal aware graph neural
network model [40] also shows a workable performance
by aggregating both neighbor and relational information
in STKG. However, the performance is also insufficient as
temporal dependency and cooperative correlation are not
considered synergistically.

To sum up, the proposed JRCL has made a remarkable perfor-
mance in SMEs supply chain prediction tasks across four real-world
industries compared to related state-of-the-art baselines.



Learning Joint Relational Co-evolution in Spatial-Temporal Knowledge Graph for SMEs Supply Chain Prediction KDD ’23, August 6-10, 2023, Long Beach , CA , USA

w/o KG
w/o CoEvo JRCL

w/o GeoRS
w/o MRS0.5

0.6

0.7

0.8

AC
C

Civil Engineering

w/o KG
w/o CoEvo JRCL

w/o GeoRS
w/o MRS0.60

0.65

0.70

0.75

0.80

0.85

AU
R

O
C

Civil Engineering

w/o KG
w/o CoEvo JRCL

w/o GeoRS
w/o MRS0.3

0.4

0.5

0.6

0.7

AU
PR

C

Civil Engineering

w/o KG
w/o CoEvo JRCL

w/o GeoRS
w/o MRS0.40

0.45

0.50

0.55

0.60

0.65

0.70

m
in

(+
P,

 S
e)

Civil Engineering

w/o KG
w/o CoEvo JRCL

w/o GeoRS
w/o MRS0.70

0.72

0.74

0.76

0.78

0.80

AC
C

Manufacturing

w/o KG
w/o CoEvo JRCL

w/o GeoRS
w/o MRS0.5

0.6

0.7

0.8

AU
R

O
C

Manufacturing

w/o KG
w/o CoEvo JRCL

w/o GeoRS
w/o MRS0.2

0.3

0.4

0.5

AU
PR

C

Manufacturing

w/o KG
w/o CoEvo JRCL

w/o GeoRS
w/o MRS

0.3

0.4

0.5

m
in

(+
P,

 S
e)

Manufacturing

w/o KG
w/o CoEvo JRCL

w/o GeoRS
w/o MRS

0.70

0.75

0.80

0.85

AC
C

Wholesaling

w/o KG
w/o CoEvo JRCL

w/o GeoRS
w/o MRS0.4

0.5

0.6

0.7

0.8

AU
R

O
C

Wholesaling

w/o KG
w/o CoEvo JRCL

w/o GeoRS
w/o MRS

0.2

0.3

0.4

0.5

AU
PR

C

Wholesaling

w/o KG
w/o CoEvo JRCL

w/o GeoRS
w/o MRS0.2

0.3

0.4

0.5

m
in

(+
P,

 S
e)

Wholesaling

w/o KG
w/o CoEvo JRCL

w/o GeoRS
w/o MRS

0.76

0.78

0.80

0.82

AC
C

Retailing

w/o KG
w/o CoEvo JRCL

w/o GeoRS
w/o MRS0.5

0.6

0.7

0.8

AU
R

O
C

Retailing

w/o KG
w/o CoEvo JRCL

w/o GeoRS
w/o MRS0.2

0.3

0.4

0.5

AU
PR

C

Retailing

w/o KG
w/o CoEvo JRCL

w/o GeoRS
w/o MRS0.2

0.3

0.4

0.5

m
in

(+
P,

 S
e)

Retailing

Figure 3: Results of ablation studies.

5.3.2 Ablation Studies. We conducted the ablation studies with
the following settings:

• JRCL (w/o KG): To demonstrate the effectiveness of intro-
ducing auxiliary information from knowledge graphs, we
only applied a plain DNN to make a prediction with the basic
information of SMEs.
• JRCL (w/o CoEvo): We also removed the cooperative cor-
relation refining module to demonstrate its usefulness in
capturing the inherent correlation among each individual
sequence in multi-view relation sequences at time 𝑡 .
• JRCL (w/o GeoRS): We only consider the SenRs to demon-
strate the effectiveness of modeling the geographical rela-
tionships between enterprises in an explicit manner.
• JRCL (w/o MRS): We removed the MRS module to demon-
strate the effectiveness of aggregating multiple representa-
tions by coordinating the coupling between temporal depen-
dency and cooperative correlation adequately.

The results given in Fig. 3 have shown that all variants of JRCL per-
form worse than the original JRCL, proving its effectiveness in each
module. From the results, the KG (w/o KG) has the greatest impact
on performance, which shows an obvious fact that the auxiliary
information encoded in knowledge graphs is crucial for the supply
chain relationships prediction. The relational co-evolution learning
(w/o CoEvo) also has a consistent impact on all the datasets, which
shows the necessity of learning the correlations from the evolution
of spatial-temporal patterns in multiple spatial-temporal knowl-
edge graph paths. The consideration of geographical-view relation
sequence (w/o GeoRS) is also helpful for performance improve-
ment, proving the fact that the geographical relationships between
SMEs should also be considered in the supply chain prediction. In
addition, considering both the compatibility and complementarity
during knowledge aggregation, the multiple random subspaces (w/o
MRS) also lead to positive performance in most cases. These results
further show that different variants of the JRCL are all helpful for
performance improvement.
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Figure 4: Analysis of parameter 𝐾 .

Moreover, we also explore how the main hyper-parameters in-
volved in JRCL affect the model performance for different variants.
Specifically, we check the sensitivity of hyper-parameter 𝐾 and Fig.
4 shows the performance of different variants under different hyper-
parameters. We can see that with a consideration of both efficiency
and performance, a relatively smaller 𝐾 (not too small) and a larger
(not too large) hyper-parameter lead to the best result. Meanwhile,
we can also see that all the performance is insufficient without
consideration of geographical relation sequence (GeoRS). It also
proves the consideration of geographical-view relation sequence
(w/o GeoRS) is helpful for performance improvement. Noted, we
take the civil engineering dataset as an example, and other datasets
also show a similar trend.
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Figure 5: The geographical distribution of SMEs from differ-
ent industries in China.

Civil Engineering Manufacturing

Wholesaling Retailing

Figure 6: The flowmaps of SMEs supply chain from different
industries in China.

5.3.3 Case Study. In order to analyze the experimental results
more intuitively, we give a case study with real data.

As we discussed before, geographic information is very useful
for supply chain relationship prediction. Here, we first investigate
SMEs’ geographic distribution and the flow map of their supply
chains to help give it a more intuitive interpretation in Fig 5-6
through visualization with a self-developed tool 4). To be specific,
the geographic distribution rules of SMEs and their supply chains
are highly related to industries. Taking the samples used in our
experiment from China as an example, we can clearly find that
the SMEs from manufacturing and wholesale industries are mainly
distributed in the southeastern coastal region of China and the
SMEs from the civil engineering industry are mainly distributed in
several provinces of China, showing a typical spatial aggregation
characteristic. From the results of ablation studies, we can also
find the GeoRS is more significant for performance improvements
in these three industries with a higher geographic distribution
4https://deepinsight.alipay.com/
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Figure 7: Analysis of Gating Networks in MRS.

correlation, while that is less significant in the retail industry. It
conforms to our assumptions.

Meanwhile, to show how the multiple random subspaces address
the winner-take-all issue in parameter training, we give an analysis
of its gating networks. Specifically, we randomly select a batch of
samples from the civil engineering industry dataset and draw the
distribution of gating weights for each individual subspace network
from the initial to convergence status in Fig. 7. Overall, we can
observe that each subspace network in the MRS layer can capture
patterns from different aspects of the convergence status, like the
expert networks in the MoE layer, while the non-random one has
failed. It shows the benefits of heightened uncertainty during pa-
rameter confirmation in the MRS layer, which also conforms to our
assumptions.

6 CONCLUSION AND FUTUREWORK
This paper proposes a novel joint relational co-evolution represen-
tation learning framework in spatial-temporal knowledge graph
for SMEs supply chain prediction. Specifically, the proposed multi-
view relational sequence mining method has been performed to
reveal themultiple semantic information encoded in the constructed
large-scale financial STKG. Meanwhile, the relational co-evolution
learning module and the multiple random subspace representation
learning layer have also been developed to aggregate the multi-
view semantic information from the spatial-temporal view by con-
sidering both compatibility and complementarity. In addition, we
experimented on four real-world industrial-level datasets to show
the effectiveness of the proposed method.

For future work, we will explore more challenging issues in such
knowledge graph enhanced SMEs relationship prediction tasks,
such as the prediction of the competitive relationship between
them.
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A APPENDIX
A.1 Supply Chain Prediction Dataset
The detailed statistics for the supply chain prediction datasets across
four real-world industries are given in Table 3. To be more spe-
cific, the SMEs supply chain prediction dataset5 includes rich basic
profiles and facts of supply chain relation of SMEs from different
industries in China such as manufacturing, civil engineering, whole-
saling and retailing. In the experiments, millions of ground-truth
relationships are used for model training, validating and testing in
each dataset, and the detailed settings are given in Table 4.

Table 3: Detailed statistics of supply chain prediction datasets
(sparsity is the proportion of negative samples, indicating
the imbalanced and skewed level of each dataset).

Dataset #SMEs #static info. #sparsity
Civil Engineering 513,389 34 0.761
Manufacturing 443,594 34 0.732
Wholesaling 1,570,749 34 0.813
Retailing 1,077,171 34 0.814

Table 4: Detailed settings of supply chain prediction datasets
for model training, validating and testing.

Dataset #train #valid #test
Civil Engineering 817,358 102,169 102,169
Manufacturing 701,945 87,743 87,743
Wholesaling 9,270,052 1,158,756 1,158,756
Retailing 3,493,188 436,648 436,648

A.2 Large-scale Financial STKG for SMEs
To well organize the facts of financial-related facts among millions
of SMEs and billions of natural persons in China, we construct a
large-scale financial spatial-temporal knowledge graph. However,
it is a very challenging task as the activities of SMEs often take
place offline in a highly frequent manner without being reported
officially, which results in a seemingly isolated online relationship.
Fortunately, as an online payment platform and e-Bank with a
wide audience, Alipay6 and MYBank7 have recorded numerous
transaction facts such as payments, transfers, debts, guarantees and
invoicing from millions of SMEs, making it possible to identify the
supply chain relationship among them and construct the financial
knowledge graph effectively. To the best of our knowledge, it is
the first attempt to construct an industrial-scale financial spatial-
temporal knowledge graph for SMEs supply chain prediction.

Specifically, we have collected numerous real online and offline
transaction records and electronic invoicing records over the years,
as well as the publicly available registration information of SMEs.
Four types of entities are defined in the STKG, namely enterprises
(B), natural persons (C), industries (I) and locations (L). Processing
5https://bksupplychain-assets.mybank.cn/
6https://www.alipay.com/
7https://www.mybank.cn/

Table 5: Detailed statistics of STKG.

Items Statistics
#STKG slices 12
#STKG granularity quarter
#STKG time span 2020-2022
#STKG triplets 2,873,027,662
#STKG entities 909,984,654
#STKG entity type 4
#STKG relations type 20

Table 6: Distribution of relations in STKG.

Relations #types #triplets
B2B 11 130,402,087
B2C 1 177,321,331
B2I 1 173,301,542
B2L 1 173,711,683
C2C 2 1,481,984,738
C2L 1 736,294,304
I2I 2 11,523
L2L 1 454
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Figure 8: The schema of STKG.

the data with information filtering, entity and relation extraction, re-
lation alignment and semantic disambiguation, we have constructed
multiple relationships between enterprise and enterprise (B2B), en-
terprise and natural persons (B2C), enterprise and industries (B2I),
enterprise and locations (B2L), natural persons and natural persons
(C2C), natural persons and locations (C2L), industries and indus-
tries (I2I), and locations and locations (L2L). As shown in Fig. 8 and
Table 5-6, we have collected more than 900 million entities and 2.8
billion triplets. To realize real-time storage and query capability,
we store the constructed large-scale STKG in our self-developed
graph database: TuGraph8.

8https://tech.antfin.com/products/TuGraph
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A.3 Baselines
We compared the proposed JRCL with some traditional predictors
[3, 5], some recent KG-based recommendation methods [35, 36] and
temporal knowledge graph reasoning models [15, 40]. The detailed
settings for those in our SMEs supply chain prediction task are
listed as follows:

• LR [3]: a classic logistic regression predictor. We used hand-
engineered features extracted from the basic information of
SMEs as the raw features.
• GBDT [5]: also a classic tree-based ensemble learning predic-
tor. The hand-engineered features of the model input were
the same as the LR.
• KGAT [35]: an embedding-based link prediction model us-
ing static knowledge graph. It can generate enterprise rep-
resentations with an attentive neighborhood information
aggregation module. Specifically, for each enterprise, we con-
catenated the output of the 𝑙-th layer and the embedding of
its basic information into a single vector, respectively, as the
input of the final predictor. In addition, we set the latest KG
slice in STKG as the static knowledge graph.
• KGIN [36]: an explainable KG-based link prediction model
by integrating relational information from multi-hop paths
in KG. For the prediction layer, both the representations of
enterprise pairs at different layers and the embeddings of
basic information are summed up as the final representations.
The KG used is also the latest slice in STKG.
• TiRGN [15]: a recent representation learning model for
temporal knowledge graph reasoning, which simultaneously
considers the sequential, repetitive and cyclical patterns of
historical facts in knowledge graphs. We follow its settings
in the relation prediction tasks.
• ST-GNN [40]: a spatial-temporal aware graph neural net-
work model for SMEs supply chain relationship mining. It
employed a plain spatial-aware aggregator and temporal-
aware aggregator for aggregating both neighbor and rela-
tional information in STKG.

A.4 Parameters
There were some training parameters in MSCL, i.e., learning rate
𝑙𝑟 and batch size 𝐵. In addition, there were also some hyperparam-
eters in the process of multi-view relation sequences mining and
relational co-evolution i.e., the size of the selected sequence 𝐾 and
the embedding size 𝑑 . With both the efficiency and performance
taken into account, the settings are given in Table 7. Moreover,
for the hyperparameters in MRS layer i.e., the embedding size 𝑑𝑠
for sub-space networks and the number of sub-space 𝑁𝑠 , the set-
tings were: 𝑑𝑠 = 16 and 𝑁𝑠 = 4. Note that, in order to guarantee
the optimal parameters in experiments, we conduct grid searches
and set the optimal hyperparameters for both our model and other
competitors, respectively.

A.5 Data Protection Statement
We list the data protection statement as follows:

• The data used in this research does not involve any Personal
Identifiable Information (PII).

Table 7: Detailed hyperparameter settings for JRCL.

Dataset 𝐾 𝑑 𝑙𝑟 𝐵

Civil Engineering 20 64 0.0001 256
Manufacturing 20 64 0.0005 256
Wholesaling 20 32 0.0005 512
Retailing 10 32 0.0001 512

• The data used in this research were all processed by data
abstraction and data encryption, and the researchers were
unable to restore the original data.
• Sufficient data protection was carried out during the exper-
imental process to prevent data leakage and the data was
destroyed after the experiments were finished.
• The data is only used for academic research and sampled
from the original data, and therefore it does not represent
any real business situation in MYBank, Ant Group.
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