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A B S T R A C T   

Dizziness and vertigo are common clinical symptoms and typical complaints of many vestibular diseases. In the 
bedside examination of dizziness and vertigo, nystagmus is the most sensitive and specific sign of vestibular 
lesions. The measurement of nystagmus pattern by infrared video goggle collected in clinic can provide a 
valuable diagnostic information for dizziness and vertigo. This paper mainly studies the automatic detection of 
torsional BPPV nystagmus based on deep learning, thus assisting clinicians diagnose dizziness and vertigo 
conveniently. In order to eliminate the invalid frames from the blinking of patients under observation, a con-
volutional neural network(ConvNet) based eye movement video condensation approach is proposed. When 
calibrating the moving pupil in the captured frame sequence, the Hough transform and trajectory tracking based 
on template matching are well combined to improve the robustness to eyelash occlusion and pupil deformation. 
In addition, the optical flow field of moving eyeball is exploited to characterize the torsion motion of torsional 
nystagmus, based on which a Torsion-aware Bi-Stream Identification Network (TBSIN) model is proposed. 
Furthermore, through label-error correction based on temporal consistency, we can merge multiple continuous 
torsional frames into torsional nystagmus segments for clinical diagnosis. Experiments are conducted on a 
clinically collected torsional nystagmus video dataset and promising experimental results show the effectiveness 
of the proposed approach. In particular, we achieve 85.73% and 81.00% in view of Accuracy and F1 mea-
surements for frame-level identification, as well as IOU performance 67.45% for final torsional nystagmus 
segment localization.   

1. Introduction 

Vestibular system is an important part of human balance system. As 
the main organ for human body to perceive the changes of body position 
and environment, it plays a key role in the sense of balance and main-
taining stable vision and posture. In clinic, the most common symptoms 
of vestibular diseases are dizziness and vertigo (abbr. by DaV), which are 
also the primary complaints. According to some statistics, its incidence 
rate reaches 20–30% in general population [1]. In addition, 40% of 
adults have obvious dizziness symptoms [2], while more than 50% [3] 
of the elderly suffer from similar symptoms. Given the noteworthy 
prevalence of DaV, it inflicts a considerable personal and 
socio-economic burden. Therefore, the research on DaV has been paid 

more and more attention, especially on the diagnosis of DaV. 
No matter for what kind of disease diagnosis, medical history is 

indispensable. The detailed and complete medical history is always the 
first choice of disease diagnosis. In addition to the medical history record 
for the diagnosis of DaV, the patient’s physical signs are another 
important basis for the diagnosis of DaV. A large number of studies have 
shown that there exists a close coupling relationship between abnormal 
eye movements and vestibular disorders [4]. Therefore, as an involun-
tary, rapid, and rhythmic movement of the eyeball, nystagmus has been 
popularly regarded as the most obvious and important sign in various 
vestibular disorders. According to the direction of eye movement, 
nystagmus patterns can be divided into horizontal, vertical, diagonal, 
and torsional. In the actual clinical signs of patients, these nystagmus 
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patterns are usually presented in a mixed way, such as “horizon-
tal + torsional” or “vertical + torsional”. 

Different from the traditional observation of patients’ physical signs 
by naked eye, video nystagmograph (VNG) [5,6] has been widely used 
in the clinical diagnosis of dizziness and vertigo. With VNG, the pupil 
movement information of patients can be captured to output sawtooth 
time series signal from nystagmus. Through the analysis of nystagmus 
signal, we can get some of the characteristics of nystagmus, including 
nystagmus trajectory, velocity, waveform, frequency, amplitude, tem-
poral profile [7], and so on, so as to assist doctors in the diagnosis of 
dizziness and vertigo. However, it should be noted that the time series 
signals of nystagmus obtained through VNG only reflect the horizontal 
and vertical translation information of the eyeball, and lack the ability to 
capture the torsion motion of the eyeball. 

However, for benign paroxysmal positional vertigo (BPPV), the most 
frequent vestibular disorder [8–11], torsional nystagmus is the most 
diagnostic signs associated with it. As a peripheral vestibular disease, 
BPPV refers to the movement of a head to a specific location, which can 
induce a short paroxysmal vertigo, accompanied by nystagmus and 
autonomic symptoms. The incidence rate is as high as 17–22% in pa-
tients with vertigo. According to its diagnostic positional maneuvers and 
a canal-specific nystagmus characteristics, BPPV is the most commonly 
clinically encountered as one of two variants: BPPV of the posterior 
semicircular canal (pc-BPPV) [12] or BPPV of the horizontal semi-
circular canal (hc-BPPV). Among them, pc-BPPV is by far the most 
common variant, accounting for 85–95% of the cases [13]. Unlike the 
hc-BPPV whose nystagmus was mainly horizontal, the pc-BPPV 
nystagmus often presents more complex patterns, with torsional and 
upbeating vertical nystagmus. For this reason, the above characteristic 
parameters provided by the traditional instrument like VNG cannot give 
doctors objective indicators to make auxiliary judgments, which will 
bring great challenges to the diagnosis of some non-specialist doctors. In 
addition, even for doctors with rich clinical experience, it is also not 
trivial to judge torsional nystagmus quickly and accurately by visual 

inspection. 
In recent years, we have witnessed the advance of deep learning, 

which has greatly promoted the development of computer vision 
[14–17], natural language processing [18–20] and other artificial in-
telligence technologies. In the aspect of medical intelligent auxiliary 
diagnosis, deep learning has also been successfully applied, such as the 
auxiliary diagnosis of benign and malignant of chest nodule CT images 
[21,22], as well as the automatic analysis of skin disease images [23,24], 
fundus images of eye diseases [25,26], pathological sections of malig-
nant tumors [27,28], etc. In order to reduce the difficulty of clinical 
diagnosis of DaV and improve the efficiency of diagnosis, we mainly 
focus on developing a deep learning based framework for torsional 
nystagmus detection in this paper. Here, the detection of torsional 
nystagmus refers to locate the torsional segments consisting of multiple 
temporal continuous torsional frames. 

To the best of our knowledge, less effort has been devoted to the 
automatic detection of torsional nystagmus in previous work due to the 
difficulties in characterizing the extremely weak, imperceptible 
torsional motion. The following points highlight several contributions of 
the paper:  

• This paper proposes a deep learning based framework to realize the 
automatic detection of torsional nystagmus, which can assist clini-
cians diagnose DaV conveniently.  

• To eliminate the invalid frames from the blinking of patients under 
observation and lighten the workload of doctors in video browsing, 
we propose an efficient convolutional neural network based 
approach for eye movement video condensation.  

• For the captured sequence of frames containing eyeball, we combine 
the Hough transform and template matching based trajectory 
tracking to calibrate the moving eyeball, facilitating the robustness 
to eyelash occlusion and pupil deformation.  

• To characterize the torsion pattern of torsional nystagmus, the dense 
optical flow field is well exploited to establish the confidence map of 
torsion motion intensity, on which the Torsion-aware Bi-stream 
Identification Network (TBSIN) model is proposed to identify the 
torsional frames. 

• We collect a benchmark dataset about pc-BPPV with manual anno-
tation, which can serve as a good benchmark for research 
community. 

The rest of this paper is organized as follows: Section 2 gives an 
illustration on the proposed deep learning based framework for detec-
tion of torsional nystagmus. Section 3 presents the methods of 
nystagmus video condensation and calibrating. In Section 3, we show 

Fig. 1. Deep learning based framework for torsional nystagmus detection, which mainly consists of video condensation, pupil calibration, dense optical flow 
estimation, deep learning based torsional frame identification and torsional segment localization. 

Fig. 2. Portable eye movement video acquisition equipment.  
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the details about torsional nystagmus detection based on deep learning. 
Section 5 demonstrates the experimental results and analysis, and Sec-
tion 4 concludes this paper. 

2. Framework 

The overall framework of the proposed deep learning based torsional 
nystagmus detection is shown in Fig. 1. Different from the commonly 
used videonystagmoscopy to collect eyeball movement video, we have 
developed a portable infrared video goggle to capture the eyeball 
movement as shown in Fig. 2. In this way, unlike the VNG installed in the 
inspection room, it is more convenient to carry out some bedside in-
spections that are not limited by time and place. 

For the captured eye movement video, the pipeline processing 
mainly includes video condensation, pupil calibration, dense optical 
flow estimation, deep learning based torsional frame identification, and 
torsional segment localization.  

- Video condensation. The purpose of video condensation is to eliminate 
those invalid frames with eye close, eyelash occlusion, etc.  

- Pupil calibration. For torsional nystagmus, the corresponding eye 
movement is usually composed of compound movement. Therefore, 
it is necessary to calibrate pupil center before estimating torsion 
intensity through optical flow field.  

- Deep learning based torsional frame identification. It should also be 
pointed out that, the torsional frame identification here refers to the 
frame-level torsion recognition. 

- Torsional segment localization. On the basis of torsional frame iden-
tification, the torsional segment localization means the merging of 
multiple temporal-continuous torsional frames into independent 
torsional segments. 

3. Condensation and calibrating of eye movement video 

3.1. CNN-based eye movement video condensation 

In bedside vestibular function examination based on eye movement 
video, due to the uncontrollable acquisition equipment, environment 
and individual patient differences, there are inevitably a large number of 
invalid video frames of the acquired video, such as those existing in 
blinking, eyelash occlusion. The purpose of video condensation is to 
eliminate these invalid frames, which will be beneficial to avoid the 

interference of them to the judgment of torsional nystagmus. On the 
other hand, it can help clinician to improve efficiency in taking retro-
spective look over the captured video. In addition, it will also facilitate 
savings in video storage. 

In Fig. 3, we show the proposed convolutionary neural network 
(CNN) [29,30] based video condensation. In practice, the video 
consideration can be taken as a task of binary classification, for which an 
end-to-end CNN model ConvNets is trained on a labeled training dataset. 
Hence, for each frame of the input video, it can be classified as P-frame 
(i.e., valid frame) or N-frame (i.e., invalid frame). Here, the P-frame also 
denotes positive sample in model training, while N-frame denoting 
negative sample. Considering the possible misclassification of ConvNets, 
the temporal context-consistency is considered for error correction. 
Specifically, we set a sliding window of size 2s + 1 (s=2 in our case) on 
each frame fi, and then calculate the number Ci of frames with the same 
label as fi in the window. Once Ci is less than a threshold Tc, its label will 
be corrected. Finally, a condensed eye movement video can be obtained 
by putting all video frames labeled as P together. 

3.2. Pupil calibration of eye movement video 

For torsional nystagmus, the eye movement is often very complex as 
we mentioned above, including both torsional motion and translational 
motion in x-direction and y-direction. To give an accurate estimation on 
torsion motion, the eyeballs from different frames need to be calibrated 
first to eliminate translational motion. Since the pupil can be approxi-
mated to a circle, a straightforward way is to use the center of the pupil 
as a calibration reference point. 

One point we should note in the process of eye movement video 
acquisition, the reflection of light source will cause spot noise on pupil in 

Fig. 3. Illustration of eye movement video condensation.  

Fig. 4. The cases of spot noise. (a) spot noise inside pupil; (b) spot noise on 
junction location; (c) spot noise outside pupil. 
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many cases as shown in Fig. 4. The presence of spot noise will adversely 
affect pupil calibration. Hence, a simple but effective morphological 
[31] pre-processing was performed before pupil calibration. Fig. 5(b) 
shows one of results with morphological pre-processing. 

As a parameterized model, Circular Hough Transform (CHT) has 
been widely used for localizing the circle center [32,33]. However, due 
to the influence of eyelash interference and pupil deformation, CHT does 
not always perform well in pupil center localization. Fig. 6 shows several 
poorly positioned examples by CHT. In the case of the calibration of eye 
movement video, it is essentially a joint spatio-temporal positioning 
problem. In addition to the spatio-positioning of pupil in each frame, the 
potential temporal correlations among consecutive frames should also 
be exploited to make a good alignment of them. In particular, to improve 
the robustness to pupil deformation, the pupil light spot, and occlusion 
from eyelash and eyelid, we propose a spatio-temporal consistent 
moving eyeball calibrating approach by combining the CHT and tem-
plate matching based trajectory tracking. 

We illustrate the proposed procedure of pupil calibration in Fig. 7. As 
we can see, the CHT is applied to the binarized image instead of the 
original input, which can be helpful of avoiding the influence of noisy 
edges. To deal with the multiple candidate circles obtained by CHT, the 
proportion of black pixels in Hough circle is used to find the best 
matching. Once we find the initial calibration reference point, i.e., the 

center of the circle with the maximum radius (the green circle), the 
template matching based trajectory tracking is carried out to keep 
temporal consistency of calibration. For the detailed implementation of 
eye movement video, we summarize it in Algorithm 1. 

Algorithm 1. Pupil calibration of eye movement video  

Input: 
f[i], i = 1, …, Nf: sequence of frames  
P = TM(A, B): template matching to find the optimum matching point P of A in B. 
Thr: threshold for template updating 
Output: 
fi ∈ ℝh×w, i = 1, …, Nf: sequence of calibrated frames  
1: for i = 1, …, Nf do 
2: Given the input f[i], obtain the morphologically pre-processed Frame[i].  
3: 

{(
Cj

i,P
j
i)
}

j=1,⋯,Nc
= CHT(Frame[i]). // Obtain Nc multiple candidate circles 

and corresponding centers for pupil fitting by Circular Hough Transform on 
binarized Frame[i].  

4: CjMax
i →CH

i , PjMax
i →PH

i . // As the best fitting of pupil in frame[i], CjMax
i is with 

the largest percentage of black pixels.  
5: end for 
6: CH

iMax→Tb, CH
iMax→Tf , PH

iMax→PT
iMax. // Initializes the template using the circle 

CH
iMax with the maximum radius.  

7: for m = iMax − 1, …, 1, n = iMax + 1, …, Nf do 
8: TM(Tb ,Frame[m])→PT

m.  
9: TM(Tf ,Frame[n])→PT

n .  
10: if ||Pb − CH

m||
2
≥ Thrthen  

11:  CH
m→Tb, PH

m→PT
m.  

12: endif 
13: if ||Pf − CH

n ||
2
≥ Thr then  

14:  CH
n →Tf , PH

n →PT
n .  

15: endif 
16: Centered on PT

m and PT
n , respectively, cropping sub-images fm and fn with size 

h by w.  
17: end for 
18: return fi, i = 1, …, Nf.  

4. Torsional nystagmus detection based on deep convolutional 
network 

4.1. Optical flow guided torsional motion confidence map 

For the detection and segmentation of torsional nystagmus, the 
central issue is how to determine the torsion of the eyeball. In clinic, 
when doctors are watching the nystagmus videos, they usually focus on 

Fig. 5. Elimination of spot noise by using morphological pre-processing. (a) 
pupil with spot noise; (b) pupil with spot noise eliminated. 

Fig. 6. Poorly positioned results by CHT.  

Fig. 7. Pupil calibration based on circular hough transform and temporal template matching.  
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the visual changes in the area of the iris and sclera on the left and right 
parts of the pupil, where is just the region of interest (ROI) that can 
provide sufficient information for diagnose of torsional nystagmus. For 
this reason, a binary mask as shown in Fig. 8(b) is applied to keep only 
the ROI active for torsion estimation. 

Optical flow exhibits the pattern of apparent motion of objects, 
surfaces, and edges in a visual scene caused by the relative motion be-
tween an observer and a scene, which can provide detailed two- 
dimensional motion vector information of the target from first frame 
to second [34–36]. Compared with sparse optical flow, dense optical 
flow is not just to select certain feature points in the image for matching, 
but to match the image pixel by pixel, calculate the offset of all points, 
and finally get the optical flow field [37,38]. 

For the eye movement video, there are no stable points of interest 
that can be extracted for calculating the sparse optical flow. To estimate 
the motion field of moving eyeball, instead of the sparse optical flow, the 
dense optical flow algorithm, also known as Gunnar Farneback method 
[39], is used in our case. Clinically, the difficulty in the diagnosis of 
torsional nystagmus mainly lies in the accompanying torsion motion is 
imperceptible. In order to make such weak torsion motion be apt to 
detect, the dense optical flow with intervals of s (s = 2 in our case) 
frames, not between the adjacent frames as usual, is calculated as shown 
in Fig. 9. In this way, it means we can actually make a more in-depth 
observation on the motion pattern of eyeball movement by enlarging 
the intensity of its movement. 

In fact, it can be assumed that the optical flow field is equivalent to 
the motion field. Thus, in order to more intuitively reflect the movement 
trend and intensity of torsional nystagmus, we can establish an optical 
flow guided torsion motion confidence (OFTMC) map to give an intui-
tive characterization of torsion motion by using the obtained two- 

dimensional optical flow field. Let F→
m 

denote the optical flow field of 
the mth frame image fm with: 

Fm̅→
(i, j) = (Mm(i, j), θm(i, j)) (1)  

where Mm(i, j) =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

Δxm(i, j)2
+ Δym(i, j)2

√

is the intensity of optical flow, 

θm(i, j) = arctan
(

Δym(i,j)
Δxm(i,j)

)

is the motion vector angle, Δxm(i, j) and Δym(i, 

j) represent the displacements in x-axis and y-axis of pixel p(i, j), 
respectively. Hence, we can obtain the OFTMC map Cm

r = {Cm
r (i, j)} ∈

ℝh×w as follows: 

Cm
r (i, j) = sgn(θm(i, j))⋅Mm(i, j) (2)  

where sgn(θ) is a sign function and given by: 

sgn(θ) =
{

1, 0 < θ < π
− 1, − π < θ < 0 (3) 

From Eq. (2) we can find that the M(i, j) is used to characterize the 
motion intensity of pixel p(i, j), while the sign function sgn(θ(i, j)) on the 
motion vector angle θ(i, j) acts as a reflection of the torsion character-
istics of pixel p(i, j). To give a clearer explanation, the visualization of Cr 
is also shown in Fig. 9 by using pseudo color. The difference in color for 
the left and right regions of the iris and sclera in the eyeball explicitly 
shows complete opposite motion trend. This phenomena is very much in 
line with the clockwise right-handed torsional movement of eyeball (the 
upper pole of the eyes beating toward right) in frame fi. In addition, 
several cases of OFTMC corresponding to different motion pasterns of 
eyeball movement are illustrated in Fig. 10. Compared with non- 
torsional frames in Fig. 10(a) and (b), the OFTMCs from Fig. 10(c) 
and (d) provide powerful clues to torsion motion. Particularly, taking 
the left-handed torsion (the upper pole of the eyes beating toward left) in 
10 (c) as an example, the dominated blue color of pixels in the left region 
means a general downward movement trend, while the yellow color in 
the right region means a general upward motion trend. The opposite 
motion trend of the left and right regions constitutes the levogyration. 
Likewise, the OFTMC in Fig. 10(d) indicates a dextroclination of eyeball. 

Fig. 8. Binary masking for ROI extraction.  

Fig. 9. Optical flow field guided torsion motion confidence map (OFTMC).  
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By establishing the OFTMC, the torsion motion and intensity of torsional 
nystagmus can be visually and intuitively observed. 

4.2. Torsion-aware Bi-Stream Identification Network 

The purpose of torsional nystagmus detection is to locate automati-
cally those segments composed of continuous torsional frames in a 
nystagmus video. As mentioned above, for a torsional frame, its torsion 
motion pattern can be well revealed by OFTMC. In recent years, deep 

convolutional networks have exhibited a remarkable ability in image 
segmentation [40], object detection [15], image classification [17] and 
other vision-related tasks. To identify whether the input frame is 
torsional or not, a Torsion-aware Bi-stream Identification Network 
(TBSIN) model is proposed by exploiting the optical flow field associated 
with pupil movement. 

Fig. 11 shows the architecture of the proposed TBSIN model. Instead 
of applying OFTMC directly as the input of the model, the optical flows 
in both x-direction and y-direction are input into the bi-stream network, 

Fig. 10. OFTMC of different motion patterns.  

Fig. 11. Architecture of the proposed Torsion-aware Bi-Stream Identification Network (TBSIN) for torsional nystagmus video.  
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thus making the identification model to be more aware of the torsional 
pattern. Considering the good performance of ResNet in feature 
extraction, the ResNet18 [17,41] network is used to serve as the back-
bone of TBSIN. 

Specifically, we adopt the same network structure as ResNet18 for 
both x-subnetwork and y-subnetwork. Following a concatenation of two 
512-d feature vectors from x-subnetwork and y-subnetwork, the 
network ends with two fully-connected layers (1024-way fc1 and 2-way 
fc2) and a softmax layer to output the predicted label ‘1’ for torsional 
frame or ‘0’ for non torsional frame. For each subnetwork, it consists of 1 
root block and 4 stacks (Stack 1–4) with each stack being superimposed 
by two Basicblocks, about which the details are provided in Table 1. In 
addition, a Dropout layer is plugged into each Basicblock so as to avoid 
the overfitting in network training. It is worth noticing that since the 
input optical flows Δx(i, j) and Δy(i, j) at pixel P(i, j) take either positive 
or negative value that corresponds to positive or negative direction, 
respectively, in x and y directions, thus we substitute the activation 
function Relu [42] in ResNet18 for Elu [43]. 

4.3. Label-error correction based on temporal label consistency 

Although the torsional characteristics of the input frame can be well 
determined by TBSIN, there inevitably exist the cases of misclassifica-
tion. In order to eliminate these errors, a label-error correction is pro-
posed by exploiting label consistency in temporal. 

Let L = [li]i=1,…Nf
∈ {0,1}Nf denote the set of labels output through 

TBSIN, where Nf is the number of frames. For each li, we put the center of 
a sliding windows W with size 2Nw + 1 on i − Nw, i, and i + Nw of L, 
respectively, to exploit the label consistency in temporal. To derive the 
judgement for label-error correction, we first count the number cj

li ,j = {1, 
2, 3}, of labels in each window that are same as li. Then, we can make 
several individual judgements Jj

i by: 

Jj
i =

⎧
⎨

⎩

true, cj
li ≥ T,

false, cj
li < T

(4)  

where T is the predefined threshold. Furthermore, by merging these 
individual judgements, we can get an ensemble judgement: 

Ji =

{
true, Vote(J1

i , J2
i , J3

i ) ≥ 2,
false, else

(5)  

where Vote(J1
i , J2

i , J3
i ) denotes the number of judgments that are true by 

the collaborative voting from J1
i ,J2

i , and J3
i . For the ith frame, once the 

obtained Ji is false, its label li will be changed to its opposite, i.e., ̃li = 1 −

li; otherwise, it will remain unchanged. In Fig. 12, we give an illustra-
tion on label-error correction by label consistency in temporal. As we 
can see, the predicted label of the ith frame is clearly not correct. By 
exploiting the label consistency in temporal, the wrong label prediction 
can be effectively corrected. 

Once the corrected sequence L̃ = [̃li]i=1,…Nf
∈ {0,1}Nf of labels is 

obtained, we need to make a further step to locate the specific torsional 
nystagmus segments. To address this issue, a simple and heuristic way is 
adopted. Let’s divide uniformly L̃ into multiple blocks, each of which is 
with the interval of Nb frames (Nb = 15 in our case). For each block, if the 
number cp of label ‘1’ (torsional frame) is greater than the number cn of 
label ‘0’ (non-torsional frame), then all the labels in this block will be 
uniformly set to ‘1’, otherwise to ‘0’. In this way, the boundary of the 
specific torsional nystagmus segments can be well localized. In essence, 
it can be seen as a block-level boundary determination of torsion 
segment. 

5. Experimental results and analysis 

5.1. Experiment setup 

5.1.1. Datasets 
The dataset used throughout this paper was collected in the 

Department of Otolaryngology, Peking Union Medical College Hospital. 
All inspection videos were captured through a portable infrared video 
goggle as shown in Fig. 2. For eye movement video condensation, we 
construct a dataset consisting of 4000 valid frames (positive samples) 

Table 1 
Network architecture of ResNet18.  

Layer name Stack 1 Stack 2 Stack 3 Stack 4 

Output size 56 × 56 × 64 28 × 28 × 128 14 × 14 × 256 7 × 7 ×512 
18-layer 

[
3 × 3,64
3 × 3,64

]

× 2  
[

3 × 3, 128
3 × 3, 128

]

× 2  
[

3 × 3, 256
3 × 3, 256

]

× 2  
[

3 × 3,512
3 × 3,512

]

× 2   

Fig. 12. Label-error correction based on temporal label consistency.  
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and 4000 invalid frames (negative samples), of which the details are 
given in Table 2. In particular, the invalid frames mainly include the 
cases of no pupil, eyebrow, eyelash, and pupil obscured. To train the 
condensation model, we use 80% of the total 8000 samples as training 
dataset and the remains as test dataset. 

In addition, as a diagnostic positional test, the Dix-Hallpike maneu-
ver was performed on all patients suspected of pc-BPPV. Totally, the 
collected dataset includes 77 pc-BPPV nystagmus videos, all of which 
are with torsional pattern, and each video contains at least one torsional 
nystagmus segment. The labelling of torsional nystagmus segments on 
each video is performed by a self-built nystagmus video annotation 
system. The detailed statistic about the detaset for torsional nystagmus 
detection are provided in Table 3. 

5.1.2. Evaluation metrics 
Performance evaluation measures of Precision, Recall, F1-score, and 

Accuracy were adopted to evaluate the performance of torsional frame 
identification of nystagmus video. 

F1 =
2⋅Precision⋅Recall
Precision + Recall

(6)  

Recall =
TP

TP + FN
(7)  

Precision =
TP

TP + FP
(8)  

Accuracy =
TP + TN

TP + TN + FN + FP
(9)  

where TP, TN, FP, and FN represent true positive, true negative, false 
positive, and false negative, respectively. 

To give a quantitative performance evaluation on the detection of 
torsional segments of nystagmus videos, the following Intersection over 
Union (IoU) measurement as shown in Fig. 13 was used. 

IoUavg =

∑Nt
i=1

1
Ng

i

∑Ng
i

j=1
∑Nd

i
k=1(Ak

i ∩ Bj
i)
/
(Ak

i ∪ Bj
i)

Nt
(10)  

where Nt denotes the number of test video, Ng
i and Nd

i denote the number 
of ground-truth and predicted torsional segments in the ith video. Ak

i and 
Bj

i denote the kth detected torsional segment and the jth ground-truth 
torsional segment in the ith nystagmus video, respectively. 

5.1.3. Implementation 
All experiments were performed under a Linux OS on a machine with 

CPU Intel(R) Xeon(R) E5-2680 v4 @ 2.40GHz, GPU NVIDIA 2080ti. The 
hyperparameters for training the torsional frame identification model 
TBSIN are shown in Table 4. 

5.2. Performance evaluation 

5.2.1. Identification of torsional frame 
We first evaluate the performance of TBSIN model for torsional 

frame identification. Here, we use ResNet18 as baseline model but with 
x-optical flow, the y-optical flow, and OFTMC as inputs, respectively. As 
can be seen from Table 5, the proposed bi-stream model TBSIN achieves 
the best performance in comparison with the other three single-stream 
based methods. Compared with the x-optical flow, it is also clear that 
y-optical flow is more informative in embodying the torsion character-
istics of torsional nystagmus. Since the optical flow guided torsion mo-
tion confidence map, i.e., OFTMC, has encoded much of information 
from both x-optical flow and y-optical flow, it performs better not sur-
prisingly than each of individual x-optical flow and y-optical flow. 

As we know, the activation function in deep learning builds the 
bridge between the network output layer and the next input layer. Since 
the optical flow input to the network has both positive and negative 
values, which is different from the image data that always takes positive 

Table 2 
The details of eye movement image datasets.  

Category Positive Negative 

Feature Pupil in the center Pupil to the right Pupil to the left Pupil up No pupil Eyebrow Eyelash Pupil obscured 

No. of frames 1000 1000 1000 1000 1000 1000 1000 1000 
Reference image 

Table 3 
The dataset for detection of torsional nystagmus.  

Dataset Torsional frames Non-torsional frames 

Training dataset 29,504 54,207 
Testing dataset 7028 12,035  

Fig. 13. The graphic explanation of IoU.  

Table 4 
The hyper-parameters of training ConvNets.  

Stage Hyper-parameters Value 

Structure Input 224*224*3  
Convolution kernel 3x3 

Training Batch size 128 
Adam Learning rate 5.0 × 10− 5  

Weight decay 1.0 × 10− 3 

Training Epoch 20  

Table 5 
Performance comparisons of torsional frame identification.  

Input Precision Recall Accuracy F1 

x-optical flow 48.07 29.20 62.27 36.33 
y-optical flow 62.16 66.19 72.68 64.11 
OFTMC Cr 61.59 68.03 70.12 64.65 
xy-optical flow 61.60 70.22 72.88 65.62  
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value, it is necessary to choose an appropriate activation function 
instead of Relu in Resnet18 when training TBSIN model. Table 6 shows 
the performance comparisons of using different activation functions. On 
the whole, Elu performs best compared with the others. This is due to the 
fact that the average output value of the Elu is close to zero, and it is also 
more robust to noise than other activation functions. 

When training the TBSIN model, we have inserted a Dropout layer in 
each Basicblock to avoid overfitting during training. As can be seen from 
Table 7, using the dropout layer in each basicblock does help improve 
performance. For instance, the F1 score can be increased by 3.09%, 
while the accuracy is with an improvement by 3.26%. 

5.2.2. Localization of Torsional segment 
Based on the identification of torsion frames, the complete torsion 

segments composed of continuous torsional frames can be obtained 
through frame-level label correction and block-level boundary deter-
mination, so as to realize the localization of torsional segments in 

torsional nystagmus video. Since there are three key parameters Nw, T, 
and Nb in frame-level label correction and block-level boundary deter-
mination, we report in Table 8 the performance variations of detecting 
the torsional segment by varying these parameters. When Nw = 5, T = 7, 
and Nb = 15, the optimal IoU for evaluating the performance of torsional 
segment detection can reach 67.45%. Meanwhile, it should also be noted 
that the F1-Score and Accuracy receive significant increments by 
15.38% from 65.62% to 81.00% and 12.85% from 72.88% to 85.73%. 

In addition, Fig. 14 also shows the examples of the detected torsion 
segments in three torsional nystagmus videos, which contain no 
torsional segment (Fig. 14(a)), 1 torsional segment (Fig. 14(b)), and 2 
torsional segments (Fig. 14(c)), respectively. Here, we use the blue area 
to denote the groundtruth of torsional segment and yellow area the 
detected torsional segments. As we can observe, there is a high consis-
tency between the groundtruth and the detected torsional segments. 

6. Discussions 

6.1. Eye movement video condensation and calibration 

The aim of video concentration is to eliminate the invalid frames 
caused by eyelid occlusion, eyebrow interference, blinking, etc., thus 
facilitating clinicians to make rapid and accurate judgments of the tor-
sion characteristics of the nystagmus. On the other hand, it will also lay 
the foundation for subsequent pupil calibration. Fig. 15 demosntrates 
the results before and after condensation of a sequence of eye movement 
frames. It can be seen that, the invalid frames (frame 5 to 15 and the 
20th frame in Fig. 15(a)) cannot provide necessary information to 
determine the torsion motion of the pupil due to the occlusion of the 
pupil by the eyelid. Through eye movement video condensation based 
on convolutional neural network, these invalid frames are effectively 
eliminated as shown in Fig. 15(b). In practice, we’ve got a recall of 98% 

Table 6 
Performance comparisons of using different activation functions.  

Activation function Precision Recall Accuracy F1 

Relu 52.97 65.53 72.39 58.59 
Leaky_Relu [44] 58.78 61.78 69.94 60.24 
Tanh 62.22 57.14 71.41 59.57 
Elu 57.34 68.77 69.62 62.53  

Table 7 
Performance comparison with and without using Dropout.   

Precision Recall Accuracy F1 

w/o Dropout 57.34 68.77 69.62 62.53 
w/Dropout 61.60 70.22 72.88 65.62  

Table 8 
Evaluation on torsional segment detection of nystagmus video.  

Nw/T  Nb Precision Recall Accuracy F1 IoUavg 

4/6 

9 82.66 73.48 84.50 77.80 61.32 
11 84.08 73.51 85.06 78.44 60.48 
13 80.99 76.32 84.61 78.59 62.65 
15 83.23 76.22 85.51 79.57 64.72  

5/7 

9 81.27 76.98 84.93 79.07 64.64 
11 82.69 77.10 85.56 79.79 63.86 
13 79.96 79.77 85.12 79.86 65.75 
15 81.88 78.92 85.73 81.00 67.45  

6/9 

9 85.05 72.95 85.26 78.54 61.51 
11 85.34 72.27 85.16 78.26 61.26 
13 83.98 76.01 85.76 79.80 63.72 
15 85.14 72.35 85.09 78.23 62.74  

7/10 

9 83.99 76.04 85.78 79.82 63.38 
11 83.55 76.58 85.77 79.92 64.04 
13 83.76 78.06 86.28 80.80 64.47 
15 83.12 75.18 85.15 78.95 63.39  

Fig. 14. Examples of detected torsional segments in 3 nystagmus videos.  

Fig. 15. Result of eye movement video condensation based on CNN. (a) Before 
condensation; (b) after condensation. 
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on the test dataset. 
Pupil calibration is a prerequisite for obtaining optical flow field of 

nystagmus video. To evaluate the performance of pupil calibration, we 
define two measures, namely degree of deviation and coverage. Here, 
the degree of deviation refers to the ratio of the distance between the 
center of reference pupil and the center of the detected pupil to the 
radius of reference pupil, and the coverage refers to the ratio of the 
intersection of the areas of the detected pupil and the reference pupil to 
the union of them. 

We randomly select 10 segments of nystagmus videos, and manually 
mark the center of the pupil and the corresponding fitting circle in each 
frame. The experimental results are shown in Table 9, from which we 
can find that the proposed CHT-TM model achieves an excellent cali-
brating performance compared with the other methods. CHT denotes 
that only using traditional Circular Hough Transform algorithm to locate 
the pupil center; CHT-TM-1 and CHT-TM-2 indicate combining CHT and 
template matching but without or with template updating to be 
considered. 

6.2. Case study 

In Table 10, we finally present the descriptions for two cases of 
captured torsional nystagmus videos, which are left torsional PC-BPPV 
and right torsional PC-BPPV, respectably. Taking 0001-R-PC-BPPV as 
an example, the length of originally captured torsional nystagmus video 
is reduced from 841 frames in total to 555 frames, which means nearly 
34% of non-informative frames are effectively eliminated. Meanwhile, 
we can also notice that the first located segment of torsional nystagmus 
(i.e., [0th–33rd] frames) is indeed a false detection. It is mainly due to 
the unstable eye movement of the patient during the initial video cap-
ture phase. Additionally, the proposed model achieves 82.13% perfor-
mance on IOU for this case. For the convenience of reviewers’ reference, 
these two cases are uploaded to the submission platform as supple-
mentary materials. 

7. Conclusions 

Torsional nystagmus is the most diagnostic signs associated with 
benign paroxysmal positional vertigo (BPPV). Thus, it is of great clinical 
significance to realize the automatic detection of torsional nystagmus, 
which cannot only relieve doctors’ working burden effectively, improve 
their diagnostic efficiency, but also provide support for the final auxil-
iary diagnostic system. We mainly in this paper focus on developing a 
deep learning based framework for torsional nystagmus detection. The 
proposed pipeline framework is composed of eye movement video 

condensation and calibration, establishing the optical flow guided tor-
sion motion confidence (OFTMC) map, and deep convolutional network 
based torsional nystagmus detection. In particular, a novel torsion- 
aware bi-stream identification network (TBSIN) model was proposed 
to perform frame-level recognition of torsion motion, on the basis of 
which the torsional segments can be automatically localized. The 
collected dataset about pc-BPPV in this work not only validates the 
effectiveness of our proposed approach, but also can serve as a good 
benchmark for research community. 
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