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A B S T R A C T

Patients with advanced cancer are burdened physically and psychologically, so there is an urgent need to pay
more attention to their health-related quality of life (HRQOL). With an expected clinical endpoint prediction,
over-treatment can be effectively eliminated by the means of palliative care at the right time. This paper de-
velops a deep learning based approach for cancer clinical endpoint prediction based on patient's electronic
health records (EHR). Due to the pervasive existence of categorical information in EHR, it brings unavoidably
obstacles to the effective numerical learning algorithms. To address this issue, we propose a novel cross-field
categorical attributes embedding (CCAE) model to learn a vectorized representation for cancer patients in at-
tribute-level by orders, in which the strong semantic coupling among categorical variables are well exploited. By
transforming the order-dependency modeling into a sequence learning task in an ingenious way, recurrent
neural network is adopted to capture the semantic relevance among multi-order representations. Experimental
results from the SEER-Medicare EHR dataset have illustrated that the proposed model can achieve competitive
prediction performance compared with other baselines.

1. Introduction

In advanced cancer treatments, the patient's HRQOL is as important
as symptomatic treatment [1]. As a patient-led treatment, palliative
care focuses on providing relief from the symptoms, pain, physical
stress, and mental stress at any stage of illness to improve the quality of
life for cancer patients [2]. Cancer clinical endpoint prediction can
estimate the expected treatment effect for patients with advanced
cancer, which will be great beneficial to determining the time for
providing hospice care and reduce over-treatment effectively [3–6]. In
addition, doctors can get more scientific decision-making basis and
provide personalized treatment for patient optimally [7].

In general, cancer clinical endpoint prediction is based on patient's
basic demographic attributes information, tumor's lesion condition and
treatment options (graphical illustration in Fig. 1) [8]. Unlike tradi-
tional numerical structured data, cancer patient's EHR usually contains
a large amount of categorical information which cannot be directly
manipulated per algebraic operations [9], which will unavoidably bring
obstacles to the application of effective numerical learning algorithms
such as deep learning methods [10,11]. In addition, there is strong

semantic coupling among multiple categorical variables [12]. Taking a
cancer patient's EHR as an example, it may be obvious that the value
‘female’ of feature gender in demographic attributes field is highly
coupled with the values ‘breast’ of feature in tumor's lesion condition
field. In fact, such case is much popular in cancer patient's EHR. Con-
sequently, how to learn effectively the vectorized representations for
categorical variables by utilizing the characteristics of semantic cou-
pling among categorical variables is still a key issue to be solved.

Traditionally, learning representation for categorical data is usually
to map discrete attribute value to a numerical vector [13,14]. As one of
the most commonly used encoding-based methods, the one-hot en-
coding [15] can be easily implemented but with weaknesses of high
dimensionality and sparseness when handing large number of catego-
rical values. Label Encoding is another way to encode numerical dis-
crete or unstructured texts to numerical label. However, the partial
order noise will be introduced into the disordered variables. The IDF
based encoding method [16] is popularly used for information retrieval
which can learn representation by frequency-inverse document fre-
quency measures, but fails to mine the semantic coupling among ca-
tegorical variables. Despite that the entity embedding method [17] can
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map similar values close to each other in the embedding space by a
neural network during the standard supervised learning, such im-
provement is limited in capturing with cross-field data. In addition,
with the implementation of ordered boosting, CatBoost [18], a widely
used method for categorical features processing can achieve better
performance compared to some tree-based methods [19,20].

To overcome the challenge to learn vectorized representations for
categorical data with strong semantic coupling, a novel cross-field ca-
tegorical attributes embedding (CCAE) model is proposed. Specifically,
to construct a multi-order corpus for each individual categorical vari-
able in EHR, the frequency of the co-occurrence combination is
exploited to form a ranking of them by the orders of cross-fields in-
teraction. Based on the obtained corpus, we can learn the embedding-
based representations for each categorical variable. Furthermore, RNN
is adopted to capture the semantic relevance among multi-order re-
presentations.

In general, our main contributions in this paper are:

• A generalized multi-order corpus with co-occurrence combination is
constructed by exploiting the semantic coupling among categorical
variables.

• A novel model named CCAE is proposed to learn the embedding-
based representation from categorical variables by the multiple or-
ders of cross-fields interaction.

• By transforming the order-dependency modeling into a sequence
learning task in an ingenious way, recurrent neural network is
adopted to capture the semantic relevance among multi-order re-
presentations.

2. Preliminaries

Let's first give some notations and formulations used in this paper.
For all categorical variables given in EHR, we divide these into three
fields (A, B and C) according to the demographics, tumor and treat-
ments. For each patient m=1, 2, …, M, it can be represented as

= ∈ + +X x x x( , , ) ℝm m
A

m
B

m
C N N NA B C, where M denotes the size of samples,

categorical variables are denoted by xm
A

∈ = … = …i A j N i N( ) { | 1, , ; 1, , }j
i

A Ai , ∈ = … = …x i B j N i N( ) { | 1, , ; 1, , }m
B

j
i

B Bi ,
∈ = … = …x i C j N i N( ) { | 1, , ; 1, , }m

C
j
i

C Ci , NA, NB and NC denote the number
of attributes in each field respectively, and NA, NB and NC are the
number of values in attributes i for each field. Furthermore, as an re-
presentation learning problem for categorical variables with strong

semantic coupling, we define the concept of ‘order’ as the number of
cross-fields to better illustrate how we deal with the correlation among
variables.

Typically, for a patient m, the patient-level embedding-based re-
presentation in order r can be defined as

= ∈ + + ×e X e x x x( ) ( , , ) ℝr
m

r
m
A

m
B

m
C N N N d( )A B C , where d is the dimension of

the learned representation for each categorical variable. Generally, we
learn a nonlinear mapping function to make a prediction ỹm with er(Xm),
r=1, 2, 3 by the following formulation:

=y f e X e X e X˜ ( ( ), ( ), ( ))m m m m
1 2 3 (1)

where f(·) is the nonlinear mapping function we take for making pre-
diction.

3. Methodology

In this section, we will present the proposed model in detail. The
overview of the framework for CCAE is shown in Fig. 2, as we can see, it
mainly consists of learning vectorized representation for categorical
variables and modeling order-dependency among multi-order re-
presentations.

3.1. Cross-field categorical attributes embedding

Usually, cancer patient's EHR are represented by categorical vari-
ables with strong semantic coupling. In this part, we will introduce how
to utilize the multi-order co-occurrence relationship of attributes to
encode categorical variables into special language pattern, and then use
the embedded-based method to learn the numerical representation in
attribute-level for each patient with the encoded pattern.

3.1.1. Field-awareness co-occurrence encoding
To get more explicit information from the limited implicit in-

formation is an important issues to address. In order to better explore
the interaction of categorical features in EHR, we divided attributes into
three fields: demographics, tumor and treatments. In fact, not all at-
tributes in the original EHR are categorical. Therefore, in order to learn
the interaction between attributes more effectively, we discretize the
continuous variables into equal-sized buckets based on rank or sample
quantiles. Specifically, age, tumor size and extension in EHR are the
continuous variables. We transformed the age of patients into discrete
groups every 5 years, such as 20–25, 25–30. For tumor size and

Fig. 1. A demonstration of the significance of
cancer clinical endpoint prediction. With the
patient's demographics and tumor information,
the cancer clinical endpoint corresponding to
different treatment options can be predicted
respectively. Furthermore, these prediction
results can be used by doctors to provide per-
sonalized treatment options which can make
less over-treatment but better HRQOL for pa-
tients.
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extension, we use the principle of consistent frequency to group the
samples. For example, as categorical attribute X i( )m

B in the tumor field,
its first-order, second-order and third-order co-occurrence combination
can be respectively defined as ×X i X j{ ( ) ( )}m

B
m
B ,

× ×X i X j X i X j{ ( ) ( ), ( ) ( )}m
A

m
B

m
B

m
C , × ×X i X j X k{ ( ) ( ) ( )}m

A
m
B

m
C , where i, j,

k=1, 2, …, NA+NB+NC and i≠ j≠ k. For an instance, in Fig. 2, the
co-occurrence combination B21 can be produced by ×X X{ (2) (1)}m

B
m
B .

Further, we also defined a list of associated attributes corresponding to
an attribute as a set of co-occurrence combinations of all different or-
ders. However, since the co-occurrence combination of each attribute
value may contain a large number of elements and introduce noise
redundancy (some of them are strongly correlated, others are not), we
will face great difficulties when we attempt to describe the context of
attribute values by using the information reflected in the associated
attribute list. So, the effect of noise can be reduced effectively, if the
lists are sorted in a certain way and done to simplify. Referring to the
skills of processing word frequency, we have proposed a clever way to
solve the above issue. Specifically, the associated attribute list can be
treated as an independent document dj, and the corresponding inverse
document frequency for each attributes idfi value can also be calculated
separately as follow:

=
∈

D
j t d

idf log | |
|{ : }|i

i j (2)

where D| | is the total number of associated attributes list and : means
the number of list containing current attribute ti.

Since the inverse document frequency can filter out more important
attribute words, we can select the Top K association attribute and sort
them according to importance to get a sequence of ordered attribute
descriptions in different order for each attribute. It should be noted that
the sequence of the ordered association attribute corresponding to each
attribute is completed in field order respectively.

3.1.2. Attribute-level embedding
The core of the learning embedded-based representation of cate-

gorical attributes is the construction of generalized corpus. The corre-
sponding attribute mentioned above with sequence of the ordered as-
sociated attribute can be seen as a generalized corpus used for
representation learning by CCAE, outlined in Algorithm 1. In addition,
the sequence of associated attributes sorted by importance can be used
to represent the contextual information of the current attribute se-
mantics which is a good indicator of the semantic coupling among the
categorical variables. Furthermore, we can learn the vectorized re-
presentation of the ordered associated context series used to describe
the current attribute by introducing methods of sentences embedding
[21]. Specifically, given a general ordered associated context series in
order r: = … … … …− +

+

L C C C( , , , , , , )i
r

k l k k l

2l 1
   , the objective of CCAE is to

maximize the average log probability

∑ …
=

−

− +K
p C C C1 log ( | , , )

t l

K l

k k l k l
(3)

The prediction task is typically done via a multi-class classifier, such as
softmax. There, we have

… =
∑− +

−p C C C e
e

( | , , )k k l k l
y

j
y

Ck l

j (4)

Each of yj is un-normalized log-probability for each selected association
attribute j, computed as

= + …− +y b C C CUh( , , ; )k l k l (5)

where U, b are the softmax parameters. h is constructed by a con-
catenation of intermediate vectors extracted from the associated con-
text series Lr in order r and the index vector extracted from I. In addi-
tion, we take stochastic gradient decent (SGD) to train the CCAE and
the gradient obtained by back propagation can be used to update

Fig. 2. Graphical illustration of learning representation from data with strong semantic coupling between cross-field categorical variables recorded in the EHR. For
all categorical variables in EHR, we divide it into three fields according to the patient's demographics information, tumor information, and treatments information.
According to different orders of attributes in EHR, the IDF-based ranked corpus can be constructed for categorical embedding by co-occurrence statistics. Thus, a
patient-level representation is obtained by attribute matching of the learned multi-ordered representation to the corresponding attribute for each patient.
Furthermore, an order-dependency recurrent neural network is introduced to model the order-dependency among multi-order representations, as well as make the
prediction of cancer clinical endpoint.
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parameters in our model.

Algorithm 1. CCAE (C, I, ω, d, τ, k)

Input:
C: Categorical attribute set, I: Index of each attribute, ω: window size, d:
embedding size, τ: training epochs, K: Length of selected association attribute
list

Output:
Categorical embedded representation in multi-order:

∈ = = … + +e C r i N N N( ) ℝ ( 1, 2, 3; 1, 2, , )r i d A B C
1: for Ci∈ C, i∈ I do
2: ⟵

∈
{idf } lgi

D
j ti dj

| |
|{ : }|

3: // Find co-occurrence combinations by orders
4: = ⟵L r C C{ | 1, 2, 3} GetCoOccur( , )i

r
i

5: for ∈L Li
r r do

6: // Select TopK combinations by idfi value
7: ⟵L L KRankTopK( , , {idf })i

r
i
r

i
8: end for
9: end for
10: while iter=1 < τ do
11: Initialization: Sample Θ and Φ from Lr, I
12: PV-DM(Θ, Φ, ω, d) [21]
13: end while

3.2. Order-dependency recurrent networks

Actually, RNN is a neural network in which nodes are connected in a
loop, and the internal state of the network can exhibit dynamic timing
behavior and is commonly used for temporal modeling. Its advantage is
that it can deal with the dependence between sequence variables. For
this reason, we transform the order-dependency modeling into a se-
quence learning task in an ingenious way and adopt RNN to capture the
semantic relevance among multi-order representations.

Specifically, we can learn the embedded-based representation from
first to third order for each attribute in EHR by the proposed CCAE and

the corresponding representation in patient-level are also available.
Furthermore, to better model order-dependency among multi-order
representations, an recurrent neural network is introduced. We define
the process of modeling order-dependency as a generalized time series
problem, and the series of r-order (r=3) embedded representation can
be defined as:

= ∈ + + × ×e e e e( , , ) ℝ N N N d1 2 3 ( ) 3A B C (6)

Traditionally, there is a limitation of the fully connected DNNs that
the signals of each neurons layer can only be propagated to the next
layer, but it is independent between time steps. However, with the
feedback loops, recurrent neural networks (RNN) can produce the re-
current connection and model the contextual information for a time
series. Then, (e1, e2, e3) can be fed into a standard RNN which computes
the hidden vector sequence h=(h1, h2, h3) and output of a single
hidden layer RNN y=(y1, y2, y3) by iterating the following equations
from r=1 to 3 as follows:

= + +−h H W e W h b( )r
r

r hih hh 1 (7)

= +y O W h b( )r r oho (8)

where the H(·) and O(·) are the activation functions in the hidden layer
and the output layer and Wih denotes the input-hidden weight matrix,
Whh the hidden-hidden weight matrix, Who the hidden-output weight
matrix, and the bh denotes hidden bias vector, bo the output bias vector.

4. Experiments

4.1. Data description and settings

Collected by the National Cancer Institute of U.S., the SEER-
Medicare1 (Surveillance, Epidemiology, and End Results), is one of the
most representative large-scale cancer registration databases and pro-
vides systematic evidence support and valuable first-hand information
for clinicians’ evidence-based practice and clinical medical research
[22,23]. The SEER research data include incidence and population data
associated by age, sex, race, year of diagnosis, and geographic areas.
SEER collects tumor data on anatomic site, laterality for paired organs,
size, and histopathological type which is based on the 2000 Interna-
tional Classification of Diseases for Oncology version 3 or ICD-O-3 [24].
Moreover, SEER also collects surgical management, radiation therapy
and chemotherapy data relating to the first course of treatment are
extracted from health records. Specifically, the program records the
type of radiation therapy and whether delivery was neoadjuvant, ad-
juvant or intraoperative and data on chemotherapy use (yes, no or
unknown) may also be assessed with a specific request. It releases new
research data every Spring based on the previous November's submis-
sion of data [25] and we use the 1973–2015 SEER research data with
additional treatment fields as experimental data.

1
It should be noted that the data we selected only contains non-au-

topsy records with positive histology, complete survival month and
valid follow-up and the CONSORT diagram is shown in Fig. 3. In ad-
dition, since the data records the time span of the patient from diag-
nosis to death in months, this paper achieves a clinical endpoint pre-
diction with monthly granularity and the detailed statistical items for
continuous variable of input and target values are given in Tables 2–4.
Furthermore, to better analyze the distribution of survival months
corresponding to different site and AJCC stage groups, some examples
are also shown in Figs. 4–8.

Table 1
Details of SEER research data (1973–2015).

Fields Attributes Description

Target value Survival months [0, 71]

Demographics Patient ID 5399 cases
Sex Female/male
Race recode Black/White/other
Year of birth [1917, 2013]
State California, etc.
Marital status Married, etc.
Insurance Insured, etc.
Age at Dx. [0, 95]
Year of Dx. [2010, 2015]
Month of Dx. [1, 12]

Tumor Site recode Stomach, etc. (WHO 2008)
Behavior recode 8340/3, etc. (ICD-O-3)
Primary site [1, 750] (ICD-O-3)
Grade Grade I, II, etc. (ICD-O-3)
Derived stage I, IA, etc. (AJCC)
Laterality Left, right, etc.
CS tumor size [0,999] (AJCC)
CS extension [10,999] (AJCC)
CS lymph nodes [0,999] (AJCC)
CS mets at dx [0,99] (AJCC)
Site rec KM Accidents, etc.

Treatments Surg Prim Site [0, 99]
Surg Reg LN Sur 1–3, etc.
Surg Oth Reg/Dis Non-primary, etc.
RT. sequence Post-surgical, etc.
RT. Recode Beam, etc.
Chemotherapy Yes/no (unknown)

1 https://seer.cancer.gov/data/
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4.2. Parameters settings

There are some parameters in CCAE, i.e., length of selected asso-
ciation attribute list K, embedding dimension d, sampling window size
ω and epochs τ. Taking into account efficiency and performance, the
setting is: K=100, d=3, ω=3, τ=50. In addition, we transform the

Fig. 3. CONSORT diagram.

Table 2
Detailed statistical items for continuous variable of input for training set.

Statistical
items

CS tumor
size (/mm)

CS extension
(/mm)

CS lymph
nodes

CS mets
at dx

Age at
Dx.

Count 4319 4319 4319 4319 4319
Mean 185.95 442.86 119.32 13.26 61.30
Std 327.82 205.90 167.10 19.90 13.37
Min 0.00 10.00 0.00 0.00 0.00
25% 30.00 300.00 0.00 0.00 52.00
50% 50.00 450.00 100.00 0.00 62.00
75% 90.00 600.00 200.00 26.00 72.00
Max 999.00 999.00 999.00 99.00 95.00

Table 3
Detailed statistical items for continuous variable of input for testing set.

Statistical
items

CS tumor
size (/mm)

CS extension
(/mm)

CS lymph
nodes

CS mets
at dx

Age at
Dx.

Count 1080 1080 1080 1080 1080
Mean 195.86 439.57 125.34 13.16 61.20
Std 339.74 209.14 178.58 19.76 13.57
Min 0.00 10.00 0.00 0.00 0.00
25% 30.00 300.00 0.00 0.00 52.00
50% 50.00 450.00 100.00 0.00 62.00
75% 90.00 595.00 200.00 26.00 72.00
Max 999.00 999.00 999.00 99.00 95.00

Table 4
Detailed statistical items for target values (survival months) in dataset.

Statistical items Train/valid Test Variation

Count 4319 1080 –
Mean 21.14 21.50 0.36
Std 16.15 16.14 0.01
Min 0.00 0.00 0.00
25% 7.00 8.00 1.00
50% 18.00 18.00 0.00
75% 33.00 33.00 0.00
Max 71.00 71.00 0.00

Fig. 4. The boxplot of distribution of survival months (sigmoid colon).

Fig. 5. The boxplot of distribution of survival months (corpus uteri).

Fig. 6. The boxplot of distribution of survival months (cecum).

Fig. 7. The boxplot of distribution of survival months (ovary).
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associated attributes of the TopK selected by the ranking of idf into
three-dimensional vector. The implementation of PV-DM [21] for em-
bedding followed the default setting in the open source framework
Gensim (3.4.0). Furthermore, we take a single-layered RNN with size of
hidden units: h=512, batchsize b=64. As for setting of dataset, we
randomly select 80% of EHR samples for training and validating, the
remaining for testing.

4.3. Evaluation metric

Three commonly used metrics: mean absolute errors (MAE), the
root mean squared errors (RMSE) and symmetric mean absolute per-
centage error (SMAPE) [26] are adopted to evaluate the performance of
all compared models as follows:

∑= −
=N

y yMAE 1 | |͠
i

N

t
i

t
i

1 (9)

∑= −
=N

y yRMSE 1 ( )͠
i

N

t
i

t
i

1

2

(10)

∑=
−

+=N
y y

y y
SMAPE 1 | |

( )/2
͠

͠i

N
t
i

t
i

t
i

t
i

1 (11)

where y͠t
i is prediction, yt

i is real value and N is the number of testing
samples.

4.4. Baseline methods and settings

Followings are the description on the characteristics and hy-
perparameter setting of baselines.

• Encoding-based methods: There are three popular unsupervised
categorical data encoding methods: One-Hot Encoding, Label
Encoding, and IDF Encoding which differentiates values with regard
to frequency. we will test these encoding-based methods with
completely discretized and partially discretized feature respectively.

• Entity embedding [17]: As an embedded-based representation
learning method for structured data, it can map categorical variables
in a function approximation problem into Euclidean spaces and be
learned by a neural network during the standard supervised training
process.

• CatBoost [18]: CatBoost can obtain the new numeric features based
on the frequency of occurrence of a certain category. In addition,
different combinations of categorical features are also considered to
mine the semantic relationships among variables.

• CCAE: Multiple combinations of representations learned from first,
second and third order by CCAE will be used for performance
comparisons.

The gradient boosting regression tree (GBRT) [27] and random

Fig. 8. The boxplot of distribution of survival months (pancreas).

Table 5
Averaged performance (MAE and SMAPE) comparison of CCAE and baselines on cancer clinical endpoint prediction task (mean± std).

Model Type Encoding methods MAE SMAPE

GBRT Cate.+Num. One-Hot Encoding 4.6553±0.0122 0.2663±0.0020
Label Encoding 4.4578±0.0009 0.2610±0.0001
IDF Encoding 4.5155±0.0351 0.2501±0.0014

Discretized One-Hot Encoding 4.4403±0.0317 0.2589±0.0021
Label Encoding 4.3344±0.0007 0.2606±0.0001
IDF Encoding 4.4755±0.0065 0.2522±0.0029

Entity Embedding [17] 4.2653±0.0155 0.2473±0.0028
CCAE (1-Order) 4.1095±0.0184 0.2384±0.0064
CCAE (2-Order) 4.1043±0.0171 0.2440±0.0018
CCAE (3-Order) 4.1105±0.0068 0.2433±0.0016

CCAE (1-Order + 2-Order) 4.1198±0.0263 0.2429±0.0034
CCAE (1-Order + 3-Order) 4.1072±0.0249 0.2424±0.0030
CCAE (2-Order + 3-Order) 4.1100±0.0207 0.2450±0.0018

CCAE (1-Order + 2-Order + 3-Order) 4.0823±0.0115 0.2405±0.0022

RF Cate.+Num. One-Hot Encoding 4.7903±0.0076 0.2616±0.0002
Label Encoding 4.6391±0.0066 0.2640±0.0003
IDF Encoding 4.6201±0.0109 0.2368±0.0013

Discretized One-Hot Encoding 4.7205±0.0309 0.2575±0.0011
Label Encoding 4.6023±0.0209 0.2623±0.0009
IDF Encoding 4.6636±0.0110 0.2358±0.0003

Entity Embedding [17] 4.5708±0.0132 0.2345±0.0014
CCAE (1-Order) 4.5277±0.0131 0.2312±0.0008
CCAE (2-Order) 4.5064±0.0312 0.2306±0.0008
CCAE (3-Order) 4.5132±0.0117 0.2315±0.0014

CCAE (1-Order + 2-Order) 4.3569±0.0236 0.2267±0.0017
CCAE (1-Order + 3-Order) 4.2766±0.0135 0.2230±0.0009
CCAE (2-Order + 3-Order) 4.3238±0.0156 0.2251±0.0011

CCAE (1-Order + 2-Order + 3-Order) 4.2363±0.0343 0.2215±0.0014

CatBoost [18] 4.4203±0.0367 0.2382±0.0071
CCAE (1-Order + 2-Order + 3-Order) + RNN 4.0238± 0.0084 0.2186± 0.0003
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forest regression (RF) [28] are used to test the performance of different
categorical variable encoding or embedding methods. For fairness, we
set fixed parameters and the same loss function of mean absolute errors
for both model. Specifically, the setting for GBRT is: n_estimators=150,
max_depth=10 and for RF is: n_estimators =200, max_depth=15. As
for CatBoost, we set the number of iterations to 200, the learning rate to
0.75, the depth to 12, and the loss function to MAE. In addition, we
define the embedding dimension for entity embedding as follows:

= ⎧
⎨⎩

+ <e c c( 1)/2 50 ,
50 elsei

i i

(12)

where ei is embedding size, ci is the amount of categories per feature.
Furthermore, we carefully tune each model respectively and tested for
five times to reduce random errors and the final results are showed in
Table 5.

4.5. Performance comparison

Comparison of our proposed method with other baseline approaches
on cancer clinical endpoint prediction task are reported in Tables 5 and
6 and the best performance is in bold. In general, we can see that the
proposed method has achieved an effective performance improvement
and showed better stability over encoded-based and embedding-based
methods under both error evaluation metric. In addition, the key
parameter of CCAE: the length of associated attribute list K and the
embedding size d which are confirmed by grid searching and showed in
Fig. 9.

We can see that the proposed method significantly outperforms
traditional encoding-based categorical attribute representation
methods. For example, the proposed CCAE with 1–3 ordered re-
presentation achieves a relative increase rate of up to 12.31% (from
4.6553 to 4.0823) and 11.57% (from 4.7903 to 4.2363) using the GBRT
and RF in MAE respectively. In addition, entity embedding method
achieves better performance but such improvement is limited in cap-
turing with cross-domain correlation in EHR data.

Table 6
Averaged performance (RMSE) comparison of CCAE and baselines on cancer
clinical endpoint prediction task (mean± std).

Model Type Encoding methods RMSE

GBRT Cate.+Num. One-Hot Encoding 8.3987±0.0006
Label Encoding 8.5427±0.0015
IDF Encoding 8.3862±0.0020

Discretized One-Hot Encoding 8.4116±0.0001
Label Encoding 8.5309±0.0027
IDF Encoding 8.3506±0.0030

Entity Embedding [17] 8.5675±0.0033
CCAE (1-Order) 8.3876±0.0015
CCAE (2-Order) 8.3117±0.0017
CCAE (3-Order) 8.2997±0.0025

CCAE (1-Order + 2-Order) 8.3259±0.0004
CCAE (1-Order + 3-Order) 8.3660±0.0026
CCAE (2-Order + 3-Order) 8.3840±0.0019

CCAE (1-Order + 2-Order + 3-Order) 8.2866±0.0028

RF Cate.+Num. One-Hot Encoding 8.3654±0.0009
Label Encoding 8.2741±0.0035
IDF Encoding 8.5446±0.0011

Discretized One-Hot Encoding 8.4125±0.0008
Label Encoding 8.2871±0.0004
IDF Encoding 8.5821±0.0011

Entity Embedding [17] 8.4750±0.0019
CCAE (1-Order) 8.3216±0.0015
CCAE (2-Order) 8.2521±0.0004
CCAE (3-Order) 8.2648±0.0007

CCAE (1-Order + 2-Order) 8.2580±0.0011
CCAE (1-Order + 3-Order) 8.2567±0.0011
CCAE (2-Order + 3-Order) 8.2491±0.0003

CCAE (1-Order + 2-Order + 3-Order) 8.2227±0.0004

CatBoost [18] 8.2241±0.0008
CCAE (1-Order + 2-Order + 3-Order) + RNN 8.0015± 0.0052

Fig. 9. Parameter sensitivity of the proposed CCAE model.
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More specifically, our approach has also achieved a satisfactory
performance improvement compared to CatBoost which is the art-of-
the-state model for processing categorical data. Furthermore, we can
also see that more different ordered representation can get better per-
formance and the introduced recurrent neural networks can better
model order-dependency among multi-order representations by com-
bining multi-order representation.

5. Conclusion and future work

In this paper, we introduced an attribute-level representation
learning method to obtain a vectorized representation of cancer pa-
tients for cancer clinical endpoint prediction and further provide better
palliative care for patients with advanced cancer. Specifically, a novel
model named CCAE is proposed to respectively learn the embedding-
based representation from cross-field categorical variables with strong
semantic coupling between each other in different orders. Furthermore,
a recurrent neural network is introduced to better model order-de-
pendency among multi-order representations. Experimental results
with real-world EHR dataset show the effectiveness of our proposed
method over other competitive baselines.

For future work, we will explore personalized treatments re-
commendation for cancer patients and more relevant applications.
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