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Despite that existing knowledge graphs embedding (KGE) based methods can achieve better
recommendation performance compared with deep learning based ones, such improve-
ment is limited due to lack of capturing the shared information between user-item inter-
action and item-item relation encoded in knowledge graph (KG) by fully leveraging the
implicit and explicit relationship. To address this issue, in this paper, we propose a princi-
pled deep knowledge-enhanced network (DKEN) framework based on deep learning and KGE
to model the semantics of entities and relations encoded in the KG. In particular, the DKEN
utilizes deep neural networks (DNN) to learn higher-order feature interactions and ensem-
bles KGE features with DNN features into an end-to-end learning process naturally to
exploit implicit interaction and explicitt semantic features. Furthermore, a cross informa-
tion sharing (CIS) layer is designed to facilitate information sharing between items and enti-
ties, and two aggregators are developed to improve the performance of the model.
Extensive experiments on several public datasets, as well as online AB tests of an industrial
recommendation scenario in the Ant Financial Service Group, demonstrate that DKEN
achieves remarkably better performance than several state-of-the-art baselines.

� 2020 Elsevier Inc. All rights reserved.
1. Introduction

With the fast growth of data volume, computation power and deep learning algorithms, deep learning-based recommended
systems (DLRS) instead of collaborative filtering based methods have attracted more and more attention in both academia
and industry [1,2]. Despite its effectiveness and universality, DLRS suffer from the inability of modeling user preferences
without more side information. In fact, this kind of data sparsity problem is a big challenge in DLRS, especially in cold-
start scenarios.

In general, side information likes user or item’s attribute information [3–6], entity2rec [7], node2vec [8], knowledge graph
[9–16], co-authorship [17], meta-prod2vec [18] and even user’s social tweets [19] can be introduced to address the data
sparsity and improve the performance of recommended systems. More typically, KGs can be usually considered as the source
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of side information. By doing so, more and more KGs are publicly available (e.g. Google Knowledge Graph,1 Microsoft Bing
Satori,2 Baidu Knowledge Graph3 and Sogou Knowledge Cube4) to research community in recent years. Furthermore, inspired
by the popularity of KGs in a wide variety of tasks, existing studies have usually tried to learn the representation of entities and
relations encoded in KG by KGE such as RKGE [13], KTUP [20], KGCN [21], DKN [22], RippleNet [23], MKR [24] and so on. How-
ever, a major problem with this kind of methods is how to fully exploit the semantics of relations encoded in KG to capture the
explicit and implicit relationship between items and entities during the representation learning.

Based on the above, some aspects which are still yet to be explored can be summarized as follows,

� How to incorporate KGE into the end-to-end learning process of a recommendation model? Existing methods, like DKN,
usually train entity embeddings separately, which can cause sub-optimal results, as KGE is not optimized towards specific
tasks.

� How to capture the shared information between user-item interaction and item-item relation encoded in KG by fully
exploiting explicit and implicit relationship for effective recommendation? From the perspective of item representation
learning, the DLRS part models implicit semantics of items with user-item interactions while the KG part models explicit
semantics of items with their relations with other entities. Since implicit and explicit semantics are highly complemen-
tary, it would be beneficial if we establish an information sharing mechanism between the two parts.

� How to design the KGE method to better represent the KG in a low-dimensional space so as to be better adapted to the
recommendation task? Instead of taking a simple random sampler during the performance propagation phase, it is nec-
essary to introduce an aggregator to obtain the user’s principal preference signal in a more effective way.

To tackle the above issues, the propose DKEN, an end-to-end knowledge enhanced DLRS framework. A cross-information
share (CIS) layer is designed to integrate KGE into DLRS and facilitate information sharing between items and entities in the
embedding phase. A knowledge-enhanced network (KEN) layer is designed to improve the knowledge graph embedding learn-
ing of the traditional propaganda-based method [23], which features two improved sampling strategies during performance
propagation operations.A deep ripple network (DRN) layer is designed to combine DNN [25] features and KGE features into an
end-to-end model.

The key contributions of this paper are threefold:

� We propose a principled approach to integrate KGE into the DLRS, which can fully exploit the value of information sharing
between implicit semantics in the user-item interaction data and explicit semantics in the knowledge graph. The design
of CIS, KEN and DRN layer is highly flexible and modular so that new KGE methods can be easily adapted.

� We design the CIS layer to realize item information sharing between the user-item implicit interaction matrix and the
knowledge graph relation matrix, which can alleviate the data sparsity problem and obtain additional valuable informa-
tion. Furthermore, we optimize the non-uniform sampler problem of traditional KG-based methods by two aggregations,
namely hottest nodes sampler and k-largest node sampler.

� We perform extensive experiments on three public datasets to evaluate the effectiveness and characteristics of our pro-
posed model. More importantly, we explore the boundary of KG-based methodology in real industrial-level online recom-
mendation tasks, opposing to small-scale benchmark datasets.

2. Related work

2.1. Deep recommender systems

Due to the great success, DLRS gains much attentions in the research field of recommendation [1]. The DLRS with side
information, which boasts greater potential to alleviate the data sparsity issue, are more relevant to this work. These
approaches can be classified by the adopted type of information. Firstly, user and item’s attribute information can be
exploited in addition to the behavior signals. For instance, [3] proposed a hybrid model to alleviate the data sparsity issue,
which utilized both the rating matrix and side information (i.e. attributes of users and items) and combined aSDAE and ma-
trix factorization together. Secondly, KG information can be incorporated into the recommendation model. Methods which
proposed recently include the RKGE model [13], the DKN model [22], the RippleNet model [23], the MKR model [21], the
RuleRec model [19], and the KTUP model [14]. The third type of side information, namely, off-topic information, which is
usually seen as unrelated to the recommendation tasks, can also be utilized. In [19] a framework is developed to capture
features from user’s off-topic content information (i.e. social tweets) and introduce them intomatrix factorization based algo-
rithms, which proves that even off-topic content information can be quite useful for recommendation performance
improvement.
1 https://developers.google.com/knowledge-graph/
2 https://searchengineland.com/library/bing/bing-satori
3 https://tupu.baidu.com/xiaoyuan/
4 https://baike.sogou.com/v66616234.htm
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2.2. Knowledge enhanced recommender systems

Introducing KG as a type of auxiliary information can effectively solve the data sparsity problem, and a number of knowl-
edge enhanced recommender systems have been proposed recently [26]. In [27], the KG is embedded with classic methods
like TransE [28] or enhanced methods like CACL [29], MultiE [30], IterE [31] and the entity embeddings are fed into an RNN-
based sequential recommender. DKN [22] trains the entity and relation embeddings by learning knowledge graph features
and then the entity embeddings are incorporated into the DLRS to learn the prediction function. Both the work above train
the KGE in a separate way, which can be unfavorable in some situations as the KGEs are not optimized for specific tasks. The
CKE [32], KGCN [24] and RippleNet [23] are designed to combine the recommendation model with the KGE learning in an
end-to-end framework. However, they couldn’t achieve effective information sharing between the explicit semantics from
the KG and the implicit semantics from the behavior signals. The MKR model [21] regards recommendation modeling
and KGE as two separate but related tasks for which thereby a multi-task learning framework is developed. The drawback
is that the KGE module is not directly adapted to the recommendation task which may cause suboptimal performance. The
major difference between our work and the above literatures is that we can offer a new perspective for recommender sys-
tems with the assistance of a heterogeneous knowledge graph.
3. The DKEN framework

In this section, we give the formulation of the research problem and the details of our approach.

3.1. Problem formulation

A recommendation model with KG enhancement can be formulated as follows. Given a user set U ¼ u1; u2; . . . ;ujUj
� �

and
an item set V ¼ v1;v2; . . . ;v jV j

� �
, we can define the user-item implicit feedback matrix as Y ¼ yuv ju 2 U;v 2 Vf g, where yuv is

an indicator function of whether user u interactions with item v. The implicit feedbacks can be clicks, music/movie plays,
payments, etc., depending on the application scenario and the business objectives. In addition to the user-item interaction
matrix Y, a knowledge graph G ¼ E;R; Eð Þ, where E ¼ e1; e2; . . . ; ejEj

� �
is a set of entities, R ¼ r1; r2; . . . ; rjRj

� �
is a set of relations,

jEj and jRj represent the number of entities and relations in KG respectively. While G# E� R� E represents the set of triples,
which is generally represented as h; r; tð Þ, here h 2 E; t 2 E, and r 2 R, where h and t represent head and tail entities, and r
represents the relation between h and t. With the matrix Y and knowledge graph G, the model is to predict the probability
of a user u would interact with an unseen item v, which can be defined as a prediction function byuv ¼ F u;v ;H;Y;Gð Þ, where
H denotes the model parameters of function F .

3.2. Framework

The model architecture of DKEN is illustrated in Fig. 1. It consists of four components, namely, the CIS Layers, the DNN
Layer, the KEN Layer, and the DRN Layer. The DKEN model takes a user u, an item v, and a knowledge triple set G as input,
Fig. 1. Overview of the Proposed DKEN Framework. It is mainly composed of four parts: CIS Layers, DNN Layer, KEN Layer, and DRN Layer.
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and outputs the predicted probability that user u will click item v. The CIS Layer is used to achieve information sharing and
complementarity between explicit and implicit features. The DNN Layer on the left is a feed-forward neural network, which
is used to learn high-order feature interactions. The KEN Layer on the right part, featuring two enhanced sampling algo-
rithms, is used to learn the embeddings for the entities and relations in the KG. The DRN Layer combines high-order repre-
sentation features from DNN Layer and the KGE features from KEN Layer into an end-to-end process to implement ensemble
learning.

3.3. Cross-information sharing layer

To alleviate the data sparsity problem and obtain additional information, the CIS layer is designed to realize information
sharing between item embeddings and entity embeddings, as depicted in Fig. 2, which are actually two types of represen-
tations for the same object.

Inspired by SoRec [33], we design a method of shared embedding to achieve information sharing. Our method can be
described as:
LCIS ¼
X
Yi;j–0

l Yi;j; Fi;j
� �

þ ag
X
i;k

l Ri;k; Pi;k
� �

þ aru hð Þ ð1Þ
Algorithm1 Learning parameters for CIS Layer

Require: Interaction matrix Y, knowledge graph G
Ensure: Prediction function F u;v ;H;Y ;Gð Þ
1: Initialize all parameters
2: for number of training iteration
3: for t steps
4: Randomly draw a rating Y v i;v j; Fi;j

� �
and G v i;vk; Pi;k

� �
;

5: Update parameters of F by gradient descent;
6: end for
7: Update the learning rate ag;
8: end for

In Eq. (1), the first term is set for the user-item implicit interactions matrix Y. While Yi;j indicates the scoring of item v i by
user uj, in this paper it actually means that user uj has clicked on item v i. Fi;j represents the correlation function between item

v i item v j through user’s historical click behavior, such as Fi;j ¼ f Vi;Vj
� �

¼ VT
i Vj, which is usually calculated based on Cosine

similarity, Pearson similarity or other similarity measurement methods. The second term is designed for the knowledge
graph relation R. Ri;k represents the correlation between item i and entity k, and it should be noted that items are also entities
in KG. Pi;k ¼ h Vi; Ekð Þ represents a function for correlation between entities through the item feature vector Vi and entity (tail)
feature vector Ek. Parameter ag is the learning rate used to control the iteration step size. The last term is the regular con-
straint of the variables contained in the above items, h ¼ Vi; Ej; . . .

� �
; i ¼ 1;2; . . . ;n; j ¼ 1;2; . . . ;m

� �
. In general, constrained

regular terms can be described by different norms, such as L1; L2; Lp; 0 6 p < 1ð Þ, etc. Parameter ar is ordinarily used to bal-
ance the contribution of the above two items.

P
Yi;j–0

l Yi;j; Fi;j
� �

and
P
i;k

l Ri;k; Pi;k
� �

can be expressed as follows:
X
Yi;j–0

Yi;j � Fi;j
� �2 ¼

X
Yi;j–0

Yi;j � g VT
i Vj

� �� �2
ð2Þ
Fig. 2. Illustration of the information sharing process between item and head (tail), r represents the hyper-parameters.
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X
Si;k–0

Ri;k � Pi;k

� �2 ¼
X
Si;k–0

Ri;k � g VT
i Ek

� �� �2
ð3Þ
The function g xð Þ is the logistic function g ¼ 1= 1þ exp xð Þð Þ, which makes it possible to bound the range of VT
i Ek within the

range [0,1]. Finally, CIS layer can be regarded as a pre-training phase in DKEN, and the loss function can be written as:
LCIS ¼
X
Yi;j–0

Yi;j � g VT
i Vj

� �� �2
þ ag

X
Ri;k–0

Ri;k � g VT
i Ek

� �� �2
þ ar jjhjj2F ð4Þ
3.4. DNN layer

In view of the lack of high-level feature learning ability [22,34,35], we try to integrate all output embeddings of CIS layer
into a DNN layer for high-level feature learning to enhance the model’s generalization ability, as the left part is shown in
Fig. 1. Denote the output of CIS layer as:
a 0ð Þ ¼ eU ; eV ; eH; eR; eT½ � ð5Þ
where e represents the embedding of U;V ; E;R; T respectively. Then, a 0ð Þ is fed into the deep neural network, and the forward
process is:
a lþ1ð Þ ¼ r W lð Þa lð Þ þ b lð Þ
� �

ð6Þ
where l is the layer depth and r is an activation function. a lð Þ;W lð Þ; b lð Þ are the output, model weight, and bias of the l-th layer.
The loss function can be written as L ¼ k�jjWjj, where k� denotes the regularization term and W denotes the set of
parameters.

3.5. Knowledge-enhanced network layer

To define the user preference propagation on the KG, we use the framework proposed by RippleNet [23]. The preference
propagation starts with an entity and then moves outward along the edge hop by hop and the signal intensity decays grad-
ually in the process of propagation, which is just like a raindrop falling into a calm lake, with the waves producing layer after
layer of ripples. As shown in Fig. 3, the color of the node gradually fades from dark to light, indicating the gradually decreas-
ing weight. To characterize users’ hierarchically extended preferences in terms of KG, [23] recursively define the set of k-hop
relevant entities for user u as follows: Given interaction matrix Y and knowledge graph G, the set of k-hop relevant entities
for user u is defined as:
Ek
u ¼ tj h; r; tð Þ 2 G;h 2 Ek�1

u

n o
; k ¼ 1;2; . . . ;H ð7Þ
where E0
u ¼ Vu ¼ v jyuv ¼ 1f g denotes a set of items that the user has ever clicked in the past, which can be seen as the seed

set of user u in KG. The k-hop ripple set of user u is defined as the set of knowledge triples starting from Ek�1
u :
Sk
u ¼ h; r; tð Þj h; r; tð Þ 2 G;h 2 Ek�1

u

n o
; k ¼ 1;2; . . . ;H ð8Þ
Illustration of ripple sets of one raindrop in KG. The different ellipses represent the ripple sets with different hops. The fading green indicates
ing relation between the center raindrop and surrounding entities.



Fig. 4. Illustration of k-largest node sampler, which contains two CNN layers. We consider a central entity with 6 tails. Each tail gets the top 4 relation
entities, represented by a 4-element vector, and each element represents the outdegree for the corresponding node. We can take a fixed-size set of
neighbors and use a 2-D CNN to produce a new vector representation of fixed-size features for the central entity. It can be seen from the figure that central
entity includes 6 neighbors, and it takes the top 4 relation entities for each tail. The 4 largest values can be selected from the neighbors in descending order
according to their outdegree. For example, a 4-element vector of the first tail is 8;6;4;2ð Þ, whose color is red. By repeating the same process for other tails,
we obtain fixed-size 4-element vectors. Concatenating them gives a 2-D data of grid-like structure, which is 2� 2 kernel. Afterwards, a 2-D CNN is applied
to generate the final vector. We can use any CNN model with different kernel sizes to ensure that the final output is a vector.
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To optimize the non-uniform sampler problem of some state-of-the-art methods, we have designed the KEN layer, as the
right part is shown in Fig. 1. Hottest nodes sampler and k-largest node sampler are designed to obtain the user’s principal pref-
erence signal during the performance propagation operations.

Hottest node sampler uses the max-pooling method to extract the hottest nodes and find each hottest child node succes-
sively. As is displayed in Fig. 3, the color of the node gradually fades from dark to light, it indicates the gradual decrease of the
weight. Given an outdegree set O ¼ o1; o2; . . . ; ojOj

� �
, where o represents the outdegree of neighbor node, the k hop set of each

node is:
Stopm
u ¼ h; r; toð Þj h; r; tð Þ 2 G;h 2 Ek�1

u

n o
;

k ¼ 1;2; . . . ;H; o P k max O;mð Þ
ð9Þ
where k max O;mð Þ is a bivariate function to calculate the m-th largest value from the outdegree set O, and m is the triple
memory size. During ripple set sampling, we sort each neighbor node in descending order according to its outdegree and
then take a fixed-size set of neighbors instead of a random ripple set to further extract salient information.

Besides, k-largest node sampler with the way of convolution neural network (CNN) can also aggregate new feature repre-
sentation from the neighbor outdegree vector of center nodes, and transform these vector features into grid-like structured
matrix with combined the outdegree vector of center node. After two layers of CNN, the transformed vector is used as the
final vector of this sample. The detailed implementation process is shown in Fig. 4. In a ripple set, the blue raindrop is the
center node, and the other nodes are the neighbor nodes.

3.6. DRN layer

The DRN Layer also leverages multiple layers to learn high-order feature interactions of DNN layer and KGE features of
KEN layer into the end-to-end process automatically as depicted in Fig. 1. All parameters and the network parameters

W lð Þ; b lð Þ
� �

are trained jointly for the combined prediction model:
byuv ¼ sigmoid yDNN þ yKENð Þ ð10Þ
where byuv 2 0;1ð Þ is the predicted CTR, yDNN the output of DNN layer, and yKEN the output of KEN layer.
The complete loss function of DRN is as follows:
L ¼ LDRN þ LKEN þ LREG ¼
X

u2U;v2V
T byuv ; yuv
� �

þx
2

X
r2R

jjIr � ETREjj22 þ
k
2

jjhjj22 þ
X
r2R

jjRjj22

 !
ð11Þ
In Eq. (11), the first term is the cross-entropy loss between ground truth of interactions Y and predicted value by DRN,
where U and V represent the set of users and items respectively. The second term is the KGE term, which is used to calculate
the squared error, where Ir is the slice of the indicator tensor I in KG and ETRE is the reconstructed indicator matrix. The last
item is aimed to prevent model over-fitting by introducing k, where h ¼ W;V ; Ef g, and R is the embedding matrix of relation
r.

We use stochastic gradient descent (SGD) algorithm to optimize the loss function. The learning algorithm of CIS layer and
DKEN are presented in Algorithm 1 and Algorithm 2. The following [36], we adopt a negative sampling strategy in each train-
ing iteration to improve the computational efficiency. Then, we can calculate the gradient of loss L with respect to model
parameter H, and update all parameters by back propagation based on a minibatch of samples.
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Algorithm2 Learning parameters for DKEN

Require: Interaction matrix Y, knowledge graph G
Ensure: Prediction function F u;v ;H; Y;Gð Þ
1: Initialize all parameters
2: Pretrain CIS layer with Algorithm 1

3: Calculate ripple sets Sk
u

n oH

k¼1
for each user u

4: for number of training iteration
5: for t steps
6: Sample minibatch of positive and negative interactions from Y;
7: Sample e � S vð Þ for each item v in the minibatch;
8: Update parameters of F by gradient descent;
9: end for
10: Sample minibatch of true and false triples from G;
11: Calculate gradients @L

@U ;
@L
@V ;

@L
@E ;

@L
@R

� �
r2R on the minibatch;

12: Update U;V ; E; Rf gr2R by gradient descent with the learning rate g ;
13: end for
4. Links to existing work

In this paragraph, the differences with related work are summarized through the comparison between state-of-the-art
methods with the proposed one. First of all, it is different from MKR [21], RuleRec [19] due to the adopted feature matrix
sharing representation in CIS layer, which focuses more on MF-based social recommendation methods in prior works, in
order to realize item information sharing between the user-item implicit interaction matrix and the knowledge graph rela-
tion matrix, i.e. the item feature matrix is used as the intermediary of the sharing representation to associate the score infor-
mation with the relation information. What’s more, compared with attention-based aggregation, which employs the neural
attention mechanism KGAT [37], KGCN [24] to learn the weight of each neighbor during a propagation, we introduce hottest
nodes sampler and k-largest node sampler to optimize the non-uniform sampler problem to explore users’ potential interests
in KEN layer. In particular, to share information between implicit semantics information in DLRS and explicit semantics
information from the knowledge graph, DKEN attempts to provide a new perspective to respond to the above issues and
has been applied in the industrial recommendation business successfully.

5. Experiments

In this section, we perform experiments on three public datasets and an industrial online application to evaluate our pro-
posed method. We aim to answer the following research questions:

� RQ1: Compared with the state-of-the-art KG-enhanced methods, how does our method perform?
� RQ2: How the different choices of hyper-parameters (e.g., different components and the sampler method in KEN layer)
affect the performance of DKEN?

� RQ3: Can DKEN provide reasonable explanations about user preferences towards items and get better recommendations
in the industrial datasets?

5.1. Experimental setup

5.1.1. Public datasets
The following three datasets were used in our experiments for movie, book and music recommendation.

� MovieLens-1 M5 is a well-known dataset for movie recommendation, which contains approximately 1 million ratings (rang-
ing from 1 to 5) from 6040 users on 3706 movies.

� Book-Crossing6 is a widely used benchmark dataset in book recommendation, which contains about 1:1 million ratings
(ranging from 1 to 10) of 270;000 books by 90;000 users.
5 https://grouplens.org/datasets/movielens/1m/
6 http://www2.informatik.uni-freiburg.de/cziegler/BX/

https://grouplens.org/datasets/movielens/1m/
http://www2.informatik.uni-freiburg.de/cziegler/BX/


Table 1
Detailed statistics of the three public datasets.#edge types indicates the number of relation types, #1-hop triples indicates the number of 1-hop relevant entities
for users, and #2-hop triples denotes the number of 2-hop relevant entities for users, and #sparsity level shows the sparsity of each dataset (i.e., #sparsity
level = 1-#interactions/ (#users � #items)).

MovieLens-1 M Book-Crossing Last.FM

#users 6036 17860 1872
#items 2445 14967 3846

#interactions 753772 139746 42364
#edge types 12 25 60

#entity 182011 77903 9366
#relationship 2483990 303000 31036
#1-hop triples 20782 19876 15518
#2-hop triples 178049 65360 77930
#sparsity level 0.948925 0.999447 0.994116

Fig. 5. Illustration of feeds recommendation KG, which contains 3 articles. Different articles are linked through entities, and each article is centered on an
article ID.

270 X. Guo et al. / Information Sciences 540 (2020) 263–277
� Last.FM7 dataset is collected from an online music website, which contains several musician listening information from two
thousand users.

Some data preprocessing work should be done before modeling. For the MovieLens-1M dataset, we treat ratings 4 and 5
as positive feedbacks, and use all ratings and listening count as positive signals in Book-Crossing and Last.FM.We use the
Microsoft Satori knowledge engine to extract knowledge triples and construct the KG for the three datasets.The detailed
statistics are summarized in Table 1.

5.1.2. Alipay feeds recommendation dataset
We have also evaluated the models on a Alipay feeds dataset, which comes from an industrial online recommendation

application in the Ant Financial Service Group. The dataset contains interactions of over 2.9 million users on over 5 thousand
items. The sample is labeled positive for click actions and negative otherwise. We got more than 9 thousand entities and 12
types of relations (e.g., KW, CATE, PUB, LOC, and MCC) in the same way as above for KGE construction. The KG demo of insur-
ance domain is shown in Fig. 5.

5.1.3. Baselines
We have evaluated our approach with the following baselines for performance comparison:

� LibFM [38] combines the generality of feature engineering with a factorization model for recommendation.
� PER [39] combines heterogeneous relationship information from different users and items with a heterogeneous infor-
mation network to do the recommendation.

� Wide&Deep [34] is a well-known recommendation model, which combines the logistic model with the DNN network.
7 https://grouplens.org/datasets/hetrec-2011/

https://grouplens.org/datasets/hetrec-2011/
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� DKN [22] uses a multi-channel and word-aligned knowledge-aware CNN to fuse the semantic level and knowledge level
representation for news recommendation.

� RippleNet [23] expands users’ potential interest according to the KG and stimulates user preference propagation on the
knowledge graph.

� MKR [21] is a multi-task feature learning approach for recommendation, which utilizes a KGE task to assist recommen-
dation task.

� KGCN [24] captures inter-item relatedness by mining their associated attributes on the KG and learns uses’ potential
long-distance interests.

� KGN-DNN adds a DNN network on the CIS layer model for higher-order feature learning as Fig. 1 shown.

5.1.4. Evaluation scheme
We use AUC and Accuracy (ACC) to evaluate the performance of different models for offline implicit feedback prediction,

and PVCTR (click through rate on page views) and UVCTR (click through rate on unique user views) for online evaluation.We
randomly divide each dataset into the training set, validation set, and test set, accounting for 60%, 20%, 20%, respectively.
Each experiment is repeated 5 times, and the average performance is reported. The optimal hyper-parameters settings for
these datasets are shown in Table 2, where d denotes the latent dimension, H denotes the number of maximum hop, x
denotes the weight of KGE, k denotes the L2 regularization, m denotes the size of the ripple set, and g denotes the learning
rate. Note that for fair consideration, the latent dimensions of other compared baselines are set the same in Table 2, while
other hyper-parameters of baselines are chosen by grid search.

5.2. Performance Comparison on public datasets (RQ1)

Table 3 shows the results of different models in CTR (Click Through Rate) prediction experiments. We discuss our findings
as follows.

� LibFM andWide&Deep perform better than PER and DKN, which shows that they can make full use of the knowledge from
knowledge graph and achieve better performance.

� PER and DKN perform unsatisfactorily on movie, book and music recommendation. PER cannot combine heterogeneous
relationship information and use heterogeneous information network effectively. However, the entity embeddings, which
are required in advance of using DKN, cannot participate in the end-to-end way of the training process.

� RippleNet and KGCN are more sensitive than MKR and DKEN for the sparsity of datasets owing to the worse performance
on book and music recommendation. The sparsity level of movieLens-1M, Book-Crossing, and Last.FM are 0.948925,
0.999447, and 0.994116, respectively. DKEN achieves average AUC gains of 6.00% and 4.13%, as well as ACC gains of
8.85% and 7.84% in book and music recommendation. But it achieves AUC gains of 1.53% and ACC gains of 1.55% in movie
recommendation, which can prove that DKEN has better performance on more sparse datasets.
Table 2
Detailed hyper-parameters settings for all datasets.

Dataset Hyper-parameters Settings

MovieLens-1 M d ¼ 32;H ¼ 2;x ¼ 10�3; k ¼ 10�7;g ¼ 0:005;m ¼ 8
Book-Crossing d ¼ 16;H ¼ 3;x ¼ 10�3; k ¼ 10�7;g ¼ 0:0007;m ¼ 8

Last.FM d ¼ 16;H ¼ 3;x ¼ 10�3; k ¼ 10�7;g ¼ 0:0007;m ¼ 32
Feeds Recommendation Data d ¼ 8;H ¼ 4;x ¼ 10�4; k ¼ 10�3;g ¼ 0:001;m ¼ 32

Table 3
The results of AUC and ACC in CTR prediction on the three public datasets.

Model MovieLens-1 M Book-Crossing Last.FM

AUC ACC AUC ACC AUC ACC

LibFM 0.892(�4.1%) 0.812(�4.8%) 0.685(�7.8%) 0.640(�9.1%) 0.777(�4.5%) 0.709(�6.8%)
PER 0.710(�23.7%) 0.664(�22.2%) 0.623(�16.2%) 0.588(�16.5%) 0.633(�22.2%) 0.596(�21.7%)

Wide&Deep 0.898(�3.4%) 0.820(�3.9%) 0.712(�4.2%) 0.624(�11.4%) 0.756(�7.1%) 0.688(�9.6%)
DKN 0.655(�29.6%) 0.589(�30.9%) 0.622(�16.3%) 0.598(�15.1%) 0.602(�26.0%) 0.581(�23.7%)

RippleNet 0.913(�1.8%) 0.835(�2.1%) 0.729(�1.9%) 0.662(�6.0%) 0.768(�5.7%) 0.691(�9.2%)
MKR 0.917(�1.4%) 0.843(�1.2%) 0.734(�1.2%) 0.704 0.797(�2.1%) 0.752(�1.2%)
KGCN 0.919(�1.2%) 0.845(�0.9%) 0.675(�9.2%) 0.620(�11.9%) 0.796(�2.2%) 0.721(�5.3%)

KGE�DNN 0.923(�0.8%) 0.850(�0.4%) 0.740(�0.4%) 0.696(�1.1%) 0.812(�0.2%) 0.759(�0.3%)
DKEN 0.930 0.855 0.743 0.697(�1.0%) 0.814 0.761



Fig. 6. (a) Running time of all methods on the three public dataset. (b) Total params of all methods on the three public dataset.
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� KGE-DNN [DKEN without KEN layer] based on CIS layer performs better than RippleNet and KGCN on movie, book and
music recommendation, which demonstrates that it can learn higher-order feature interactions, and capture user interest
through information sharing between items and entities in the embedding phase.

� In general, our DKENmodel performs best among all models on the three public datasets. It achieves average AUC gains of
12.18%, 9.25% and 12.38%, and ACC gains of 12.38%, 10.34% and 13.36% in movie, book and music recommendation,
respectively. This demonstrates the effectiveness of DKEN on better exploiting both implicit semantics in the behavior
data and the explicit semantics in the knowledge graph.

� To analyze the performance of DKEN, we compare it with several state-of-the-art baselines in their optimal hyper-
parameters from two common ways (running time and total parameters)[40]. As can be seen from Fig. 6, the proposed
model performs well both in terms of running time and total parameters.

5.3. Parameter sensitivity (RQ2)

In this section, we analyze the influence of different modular layers in our model, and examine the hyper-parameters
d;m;x, and H of DKEN on three public datasets.
5.3.1. Impact of CIS layer, DNN layer and KEN layer
Experimental results in Table 4 show the detailed performance of different layers in different datasets. In MovieLens-M,

the ERN layer performs best, while the DNN layer plays little role in the DKEN model. However, the CIS layer performs best
on Book-Crossing and Last.FM, which also proves that CIS can alleviate the data sparsity problem and obtain additional valu-
able information.
5.3.2. Impact of the sampler method in KEN layer
Compared with other aggregation, we have designed two non-uniform samplers during preference propagation to better

explore users’ potential interests and improve the performance on KG. As shown in Fig. 7, DKEN with k-largest node sampler
performs better than the model with a random sampler, which demonstrates that the developed k-largest node sampler
method learns more useful information and captures user interest than random sampler.
5.3.3. Impact of embedding dimension
We have modulated the size of embedding dimension to further validate the efficiency of embedding. From Table 5 we

can draw the observation that the performance is improving with the increase of embedding dimension while downgrading
after the critical point is reached, and the DKEN model achieves the best performance when d is 16 or 32. As the dimension
increases, the representation power of the model improves. However, at the same time, more noise is involved and the
model begins to suffer from overfitting.
5.3.4. Impact of the size of ripple set for each hop
We have investigated the efficiency about the size of the ripple set for each hop. Table 6 shows that the AUC metrics

improve as the ripple size increases at the beginning but downgrade after the critical point is reached. This can be explained
in the similar way as the impact of the embedding dimension.
Table 4
The detailed performance of different layers.

MovieLens-1 M Book-Crossing Last.FM

AUC ACC AUC ACC AUC ACC

DKEN(without CIS layer) 0.926 0.851 0.725 0.671 0.793 0.733
DKEN(without KEN layer) 0.923 0.850 0.741 0.696 0.794 0.747
DKEN(without DNN layer) 0.929 0.857 0.740 0.696 0.812 0.759

DKEN 0.930 0.855 0.743 0.697 0.814 0.761



Fig. 7. (a) The AUC and ACC with different sampling methods on MovieLens-1M dataset. (b) The PVCTR and UVCTR of different sampling methods with an
industrial online AB test.

Table 5
AUC result of DKEN with diffrerent dimensions of embedding d.

d MovieLens-1 M Book-Crossing Last.FM

AUC ACC AUC ACC AUC ACC

2 0.909 0.831 0.734 0.693 0.796 0.758
4 0.917 0.840 0.736 0.694 0.809 0.759
8 0.927 0.854 0.739 0.693 0.813 0.760
16 0.928 0.855 0.743 0.697 0.814 0.761
32 0.930 0.853 0.740 0.694 0.810 0.757
64 0.928 0.853 0.741 0.696 0.812 0.759

Table 6
AUC result of DKEN with diffrerent size of ripple set for each hop m.

m MovieLens-1 M Book-Crossing Last.FM

AUC ACC AUC ACC AUC ACC

2 0.926 0.852 0.741 0.694 0.812 0.755
4 0.927 0.853 0.740 0.696 0.813 0.757
8 0.930 0.853 0.743 0.697 0.812 0.758
16 0.929 0.855 0.741 0.695 0.812 0.759
32 0.930 0.857 0.741 0.697 0.814 0.761
64 0.929 0.855 0.740 0.695 0.810 0.758
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5.3.5. Impact of the weight of the KGE term
We have investigated the efficiency about the weight of KGE (i.e. the parameter x in Table 2) term by modulating the

weight from 0:00001 to 0:01. Table 7 shows the results of AUC in three public datasets, and DKENmodel performs best when
the weight of KGE is 0:0001. The results also show that DKEN can not predict the CTR with a small weight of KGE term due to
the slight regularization constraints, but a large weight may mislead an objective function.

5.3.6. Impact of the number of the maximum hop
We have investigated the performance about the number of the maximum hop. As can be concluded from Table 8, the

performance is improving with the increase of hop number, and downgrading after the critical point is reached. A small
H is difficult to explore the long-distance correlations and dependencies of entities, while a large H may bring more noises
from useful information. Meanwhile, in MovieLens-1M, the best performance is achieved when H is 2 and others are
achieved when H is 3, which shows that a sparse data may require a large H, but a dense data just requires a smaller H.

5.4. Alipay feeds recommendation dataset and online experiment (RQ3)

5.4.1. Performance comparison
We have also evaluated different algorithms on a feeds recommendation dataset from an industrial online application.

The comparison results are reported in Table 9 and the detailed results of online metrics are shown in Fig. 8, from which
we can conclude that:



Table 7
AUC result of DKEN with diffrerent weight of the KGE term x.

x MovieLens-1 M Book-Crossing Last.FM

AUC ACC AUC ACC AUC ACC

0.00001 0.828 0.854 0.742 0.697 0.813 0.757
0.00005 0.929 0.855 0.742 0.696 0.813 0.758
0.0001 0.930 0.853 0.743 0.697 0.814 0.761
0.0005 0.929 0.855 0.741 0.695 0.811 0.758
0.001 0.928 0.854 0.740 0.693 0.812 0.757
0.005 0.929 0.856 0.740 0.697 0.812 0.758
0.01 0.924 0.848 0.740 0.693 0.811 0.759

Table 8
AUC result of DKEN with diffrerent number of the maximum hop H.

H MovieLens-1 M Book-Crossing Last.FM

AUC ACC AUC ACC AUC ACC

1 0.927 0.852 0.741 0.694 0.813 0.757
2 0.930 0.853 0.740 0.696 0.812 0.758
3 0.929 0.855 0.743 0.697 0.814 0.761
4 0.928 0.854 0.740 0.693 0.811 0.759

Table 9
The results of different models on the feeds recommendation dataset.

PVCTR UVCTR AUC ACC

RippleNet 1.69% 2.04% 0.615 0.692
MKR 1.84% 2.27% 0.618 0.679

KGE-DNN 2.14% 2.51% 0.625 0.748
DKEN 2.24% 2.67% 0.637 0.760

Fig. 8. (a) The detail performance of the PVCTR metric at different time periods of one day. (b) The detail performance of the UVCTR metric in a whole day.

274 X. Guo et al. / Information Sciences 540 (2020) 263–277
� Experimental results in Table 9 have indicated that the DKEN model outperforms the RippleNet, MKR, and KGE-DNN by
yielding 32.54%, 21.74% and 4.67% of the PVCTRmetric, 30.88%, 17.62% and 6.37% of the UVCTRmetric, respectively. DKEN
also performs the best in terms of AUC and ACC. These results demonstrate that our DKEN model is highly effectiveness
for online recommendations.

� KGE-DNN [DKEN without KEN layer] based on CIS layer performs better than MKR and RippleNet, which shows that KGE-
DNN can learn higher-order features better than MKR.

� Fig. 8 shows the PVCTR and UVCTR of DKEN with other baselines at different time periods of one day, which draws the
observation that the curve of DKEN is always higher than the baselines in a whole day and proves the efficiency of DKEN
model. In addition, compared with other baselines, DKEN can be improved steadily, which indicates that DKEN is more
stable and robust in online scenario.



Table 10
Illustration of click history for a randomly sampled user, the first column is the title of the content. The second column is the category distribution of articles,
which is indicated as category:number of related articles, such as C013:4. The third column is the distribution of entities, indicated as entities: number of
related articles, e.g. patients:5.

Click History Categories Entities of KG

1. Do you know the etiology of gouty arthritis and the methods
of disease prevention?

2. What is the best way to preserve one’s health during the
Spring Festival?

{patients:5,disease:4,insurance:3, hospital:3,
medicare:3,doctor:3,

3. The implementation plan of medical care, health, poverty
alleviation and medical expenses coverage is closely related
to everyone!

{C013:4,C028:2,
C025:1,C007:1,
C005:1,C001:1}

age:2,cardiovascular:2,claims:2, cold:2,woman:2,
hypertension:2, TCM:2,chronic:2,man:2,medicaid:2,
outpatient:2,parents:2,

4. After 50 years old, you must give up these habits! Health is
better than anything!

diabetes:2,sanitarian:2,treatment:2, middleaged:2,
reimbursement:2}

5. How important is it for children to have kid’s insurance
when the Spring Festival is at home?

Table 11
Illustration of the recommended results of KGE-DNN [DKEN without KEN layer], RippleNet, MKR and DKEN respectively, in which KGE-DNN does not employ
KGE. Bold and italicized parts indicate the same categories and entities as the user’s historical click content.

Top 2 Recommended Records Categories Entities of KG

1. How can Alipay’s outpatient reimbursement claim
the DuoShouDuoBao in the merchant service?

C019 {premium,woman,kids,pension,social-security,staff,endowment-
insurance,aging}

KGE-DNN 2. If you are a merchant, how to make good use of
Alipay and let us pay for your medical treatment?

C007 {medical-fee,hyperplasia,tympanitis, rheumatism,woman,
medical, treatment}

1. Can I continue to receive full reimbursement for
outpatient service in 1000 RMB?

C002 {sequela,reimbursement,palsy, transplantation,hepatitis,
nephrosis, stroke,tumor,outpatient}

RippleNet 2. Endowment Insurance has changed! If you don’t
understand these problems, your social security will be
paid for nothing!

C001 {insurance,woman,kids,pension, endowment-insurance,
medicaid, staff,endowment-insurance, retirement,aging}

1. Open the gift bag! 80 million gift bags are waiting for
you to collect!

C019 {family,medical-insurance,age, medicare,disease,medicaid,
oldness}

MKR 2. The DouShouDuoBao of Alipay, Merchant will have
free insurance if they collect money with the collection
code.

C001 {emergency,medicare,reimbursement, coverage,courier,
insurance, wife,hospital,merchant,university, couple,civilians,
claims}

1. How to claim reimbursement for outpatient service?
DuoShouDuoBao in Merchant Service.

C013 {merchant,claims,disease,treatment, medicare,
hospital,coverage,outpatient, emergency,civilians,
reimbursement, endowment-insurance,insurance}

DKEN 2. The red envelope is smaller. DouShouDuoBao will
make us full of happiness!

C001 {disease,insurance,merchant,treatment, medicare,claims,
medicaid,coverage}
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5.4.2. Case study
To demonstrate the effectiveness of using KG, we randomly chose 5 historical click records of a user, as illustrated in

Table 10. We mainly analyze the results from two perspectives: category coincidence and entity coincidence [41]. If the coin-
cidence of categories and entities between historical records and recommended results is higher, it is more consistent with
the user’s preference. Table 11 shows the recommended results of KGE-DNN [DKEN without KEN layer], RippleNet, MKR and
DKEN respectively. By comparing categories and entities of recommended candidates, the results of KGE-DNN do not match
users’ historical content very well. Oppositely, we can clearly observe that the categories and entities of DKEN recommended
candidates are the same as those historical records. Furthermore, the coincidence is more higher. To some extent, this
approach can enhance the interpret-ability of recommendation objectives.

6. Conclusion and future work

In this paper, we study the problem of data sparsity for recommendation models. We propose DKEN, an end-to-end
framework that takes both advantages of DLRS and KGE. With the DLRS module, it can learn higher-order feature interac-
tions based on CIS layer. With the KGE module, it can learn representations for explicit semantics and the learnt represen-
tations can be optimized for a specific recommendation task in an end-to-end process. Specifically, the CIS layer achieves
information sharing between implicit semantics and explicit semantics to be beneficial for the performance. The KEN layer
with two effective samplers optimizes the non-uniform sampler problem during the performance propagation phase. Finally,
we demonstrate the significant superiority of DKEN over baseline models through extensive evaluations on both public data-
sets and a real-world online scenario. More importantly, we propose an important research question and direction, namely
how to design a model framework to combine the advantages of both the knowledge graph and the DLRS, and we think that
it’s valuable to attract more attention on this direction from both the research and industry communities.
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For future work, we plan to (1) introduce heterogeneous network embedding to our framework to extract semantic rep-
resentations from the KG more effectively, (2) explore constrained recommendation based on domain knowledge graph,
which is a promising way to integrate domain knowledge with DLRS.
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