
Knowledge-Based Systems 181 (2019) 104785

Contents lists available at ScienceDirect

Knowledge-Based Systems

journal homepage: www.elsevier.com/locate/knosys

EA-LSTM: Evolutionary attention-based LSTM for time series
prediction
Youru Li a,b, Zhenfeng Zhu a,b,∗, Deqiang Kong c, Hua Han d,e, Yao Zhao a,b

a Institute of Information Science, Beijing Jiaotong University, Beijing, 100044, China
b Beijing Key Laboratory of Advanced Information Science and Network Technology, Beijing, 100044, China
c Microsoft Multimedia, Beijing, 100080, China
d National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
e CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai, 200031, China

a r t i c l e i n f o

Article history:
Received 15 November 2018
Received in revised form 28 February 2019
Accepted 18 May 2019
Available online 27 May 2019

Keywords:
Evolutionary computation
Deep neural network
Time series prediction

a b s t r a c t

Time series prediction with deep learning methods, especially Long Short-term Memory Neural
Network (LSTM), have scored significant achievements in recent years. Despite the fact that LSTM
can help to capture long-term dependencies, its ability to pay different degree of attention on sub-
window feature within multiple time-steps is insufficient. To address this issue, an evolutionary
attention-based LSTM training with competitive random search is proposed for multivariate time
series prediction. By transferring shared parameters, an evolutionary attention learning approach is
introduced to LSTM. Thus, like that for biological evolution, the pattern for importance-based attention
sampling can be confirmed during temporal relationship mining. To refrain from being trapped into
partial optimization like traditional gradient-based methods, an evolutionary computation inspired
competitive random search method is proposed, which can well configure the parameters in the
attention layer. Experimental results have illustrated that the proposed model can achieve competetive
prediction performance compared with other baseline methods.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

A time series is a series of data points that are indexed in
chronological order. Effective prediction of time series makes bet-
ter use of existing information for analysis and decision making.
Its wide range of applications include, but are not limited to,
clinical medicine [1], financial projections [2], traffic flow predic-
tion [3], human behavior prediction [4], and other areas. Unlike
other predictive modeling tasks, time series increases the com-
plexity of sequence dependencies among input variables. There-
fore, how to build a suitable predictive model for real time predic-
tion tasks by making full use of complex sequence dependencies
is a key issue.

The study of time series prediction begins with a regression
equation [5] that predicts the number of sunspots in a year in data
analysis. Auto Regressive Moving Average model (ARMA) and
Auto Regressive Integrated Moving Average model (ARIMA) [6]
show that time series prediction modeling based on regression
method is becoming more and more popular. Therefore, these
models have also become the most basic and important models

∗ Corresponding author at: Institute of Information Science, Beijing Jiaotong
University, Beijing, 100044, China.

E-mail address: zhfzhu@bjtu.edu.cn (Z. Zhu).

in time series prediction. However, due to the high complexity,
irregularity, randomness and non-linearity of actual data, it is
difficult to achieve high-precision prediction through complex
models. By using machine learning methods, one can build non-
linear prediction models based on a large amount of historical
data. In fact, through repeated training iterations and learning
approximations, machine learning models can obtain more ac-
curate predictions than traditional statistical-based models. Typ-
ical methods include support vector regression [7] or kernel-
based classification and artificial neural multi-order (ANN) [8]
with strong nonlinear function approximation and tree-based
ensembele learning methods, such as gradient-enhanced regres-
sion or decision tree (GBRT, GBDT) [9,10]. However, since the
above method lacks efficient processing of sequence dependen-
cies between input variables, the effect is limited in time series
prediction tasks [11].

As we know, recurrent neural networks (RNN) [12] are often
seen as the most efficient method of time series prediction.
Actually, RNN is an artificial neural network in which nodes
are connected in a loop, and the internal state of the network
can exhibit dynamic timing behavior. However, as the length
of the processing time series increases, problems such as gra-
dient disappearance often occur during training of RNNs using
conventional activation functions, such as tanh or sigmoid func-
tions, which limit the prediction accuracy of the RNN. The Long

https://doi.org/10.1016/j.knosys.2019.05.028
0950-7051/© 2019 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.knosys.2019.05.028
http://www.elsevier.com/locate/knosys
http://www.elsevier.com/locate/knosys
http://crossmark.crossref.org/dialog/?doi=10.1016/j.knosys.2019.05.028&domain=pdf
mailto:zhfzhu@bjtu.edu.cn
https://doi.org/10.1016/j.knosys.2019.05.028

2 Y. Li, Z. Zhu, D. Kong et al. / Knowledge-Based Systems 181 (2019) 104785

and Short-Term Memory Unit (LSTM) [13] is based on a sim-
ple RNN that solves the problems of memory and forgetting by
adding some multi-threshold gates. Therefore, LSTM and Gated
Cycle Unit (GRU) [14] address the limited ability to handle long-
term dependencies to some extent. These methods have been
successfully applied to many sequence learning problems such
as machine translation [15]. In general, LSTM is considered to
be one of the state-of-the-art methods for dealing with time
series prediction problems. Inspired by cognitive neuroscience,
some researchers have introduced attention mechanisms into
the coding-decoding framework [16]. Attention mechanisms can
better select input sequences and encode semantics in long-term
memory to improve the information processing capabilities of
neural multi-order. Recently, attention mechanisms have been
widely used and perform well in many different types of deep
learning tasks, such as image captioning [17], visual question
answering [18] and speech recognition [19]. Specifically, most
research work [11,20] is usually done by introducing a layer of
attention into the encoding–decoding framework.

Time series prediction features are typically obtained by slid-
ing the time window, and the prediction results are affected
by the sequence of events. First, we established a multivariate
temporal prediction model based on LSTM. Then, inspired by the
input information of the human brain’s attention mechanism, we
introduced a layer of attention in LSTM. The introduced attention
mechanism can quantitatively assign importance weights for each
specific time step in the sequential features to improve the at-
tentional dispersion defects of the traditional LSTM. Furthermore,
our research innovation lies in: Based on the idea of evolutionary
computation [21], we propose a competitive random search (CRS)
instead of the gradient-based method to solve the attention layer
weights. Specifically, when the optimal solution is solved, the
random search operator proposed by us can flexibly change the
search direction to avoid falling into local optimum [22–24].
Therefore, compared to the traditional gradient-based approach,
competitive random search is able to better solve the focus layer
weights introduced into the LSTM. Our proposed CRS imple-
ments an effective improvement of the selection operator and
the crossover operator in the genetic algorithm according to the
evolutionary strategy. In particular, the improved crossover oper-
ator has integrated more stochastic mechanisms to maintain the
differences between the progeny individuals, thereby avoiding
premature convergence of the algorithm and being trapped in
local optimum. In addition, we use the basic bit mutation oper-
ator to specifically perform the mutation operation by randomly
inverting one or several gene values at the locus according to the
mutation rate on a single encoded string. To verify performance,
we performed some experiments on several time series predic-
tion datasets for regression and classification tasks and compared
the proposed methods with other baseline methods. The results
show that the proposed method can produce higher prediction
accuracy than other baseline methods.

2. Preliminaries

In this section, formulation and description of the problem
will be displayed. Time series prediction which can be divided
into regression or classification problems usually uses a histori-
cal sequence of values as the input data. Given sliding-window
feature matrix of training series X = (X1, X2, . . . , XT) and Xt =

(x1t , x
2
t , . . . , x

L
t), where Xt ∈ X . Meanwhile, we define the length of

time-step as L. Typically, historical values y = (y1, y2, . . . , yT−1)
are also given. As for classification problems, the historical values
y are discrete.

Generally, we learn a nonlinear mapping function by using the
history-driven sequence feature X and its corresponding target

value y to obtain the predicted value ỹT with the following
formulation:

ỹT = f (X, y) (1)

where mapping f (·) is the nonlinear mapping function we aim to
learn.

3. Methodology

In this section, we will introduce the evolutionary attention
based-LSTM and the competitive random search and present how
to train this model in detail. In this part, we first give the overview
of the model we proposed. Then, we will detail the evolutionary
attention-based LSTM. Furthermore, we present the competi-
tive random search and a collaborative training mechanism. A
graphical illustration is shown in Fig. 1.

3.1. Overview

The idea of an evolutionary attention-based LSTM is to in-
troduce a layer of attention to the basic LSTM networks. This
enables LSTM can not only to handle the long-term dependen-
cies of driving sequences over historical time steps, but also an
importance-based sampling. To avoid being trapped, we learn
the attention weights by a competitive random search referring
to evolutionary computation. To train the model, a collaborative
mechanism is proposed. Attention weight that is learnt from
the competitive random search is transferred to evolutionary
attention-based LSTM for time series prediction. Meanwhile, pre-
dicted errors, as the feedback, are sent to direct the searching
process.

3.2. Temporal modeling with EA–LSTM

Traditional methods generally model the time series predic-
tion problem with hand-crafted features and make the prediction
by well-designed regressors. Recurrent neural network (RNN) is
chosen because of its capability to model long-term historical in-
formation of temporal sequences. Despite of so many basic LSTM
variants for capturing long-time dependencies proposed recently,
a large-scale analysis shows that none of them can improve
the performance in this issue significantly [13,25]. Therefore, we
solve the problem of long-term dependence by replacing the
simple RNN unit with the LSTM neuron structure in the recurrent
neural network. The LSTM is a special kind of RNN. With its
gated structure, including the forget gate, the input gate and the
output gate, LSTM can memorize what should be memorized and
forget what should be forgot. Especially, the forget gate is the first
operator in LSTM to decide what information in last time-step
should be dropped with a sigmoid function. It is a key operator
in gated structure.

Firstly, we define the attention weights as:

W = (W 1,W 2, . . . ,W L) (2)

with these attention weights, we can take importance-based sam-
pling for input data with

X̃t = (x1t W
1, x2t W

2, . . . , xLtW
L) (3)

Then, X̃ = (X̃1, X̃2, . . . , X̃T) is fed into LSTM. Furthermore, we can
learn the nonlinear mapping function by these formulations [26]
of the calculating process in LSTM cells as follows:

it = σ (WxiX̃t +Whiht−1
+Wcict−1 + bi) (4)

f t = σ (Wxf X̃t +Whf ht−1
+Wcf ct−1 + bf) (5)

ct = f tct−1 + it tanh(Wxc X̃t +Whcht−1
+ bc) (6)

Y. Li, Z. Zhu, D. Kong et al. / Knowledge-Based Systems 181 (2019) 104785 3

Fig. 1. Graphical illustration of training evolutionary attention-based LSTM with competitive random search. This figure is composed of two parts. The left part displays
the process of competitive random search, and the right part the structure of evolutionary attention-based LSTM. On the right, each sample: Xt = (x1t , x

2
t , . . . , x

L
t)

in the training set X = (X1, X2, . . . , XT) multiplies attention weight Wi , the learning result of the left part, producing X̃t = (x1t W
1
i , x2t W

2
i , . . . , xLtW

L
i), and X̃t are

respectively sent to LSTM for training. Finally, the error between the predication result ỹT and the real value yT is obtained in the validation set. The left part
consists of a loop where the initial population W = (W1,W2, . . . ,WN) is established in ‘‘a’’, and the individual Wi is encoded into W B

= (W B
1 ,W B

2 , . . . ,W B
N) through

binary code and sent to ‘‘b’’. Meanwhile, Wi are respectively transferred to the right network and the corresponding loss evaluation is gained in accordance with the
prediction error of the network. Then, the champion individual set W̃ is selected according to the loss situation of W̃ B in ‘‘c’’, and its subset combination is traversed
repeatedly. Finally, the new population is reestablished in the light of operations in the red dotted box and W , the new-generation population, is produced. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

ot = σ (WxoX̃t +Whoht−1
+Wcoct−1 + bo) (7)

ht
= ot tanh(ct) (8)

where σ (·) represents the activation function of sigmoid and W
matrices with double subscript the connection weights between
the two cells. In addition, it represents input gate state, f t forget
gate state, ct cell state, ot output gate and ht the hidden layer
output in current time-step. Finally, we can take the last element
of output vector ht−1 as the predicted value. It can be represented
as:

ỹt = ht−1 (9)

the final output value can be contacted to a vector:

ỹT = (ỹ1, ỹ2, . . . , ỹT) (10)

3.3. Competitive random search

Based on genetic algorithm, competitive random search (CRS)
is proposed to generate the optimum parameter combinations in
the attention layer of LSTM network. The detailed process of the
CRS is elaborated in Fig. 1. The CRS consists of four parts which
are introduced as follows.

In Fig. 1, attention weights set, population, W = (W1,W2, . . . ,
WN) is given in ‘‘a’’. While being translated into W B

= (W B
1 ,

W B
2 , . . . ,W B

N) through binary code and sent into ‘‘b’’, the indi-
vidual Wi which denotes attention weights are transferred into
networks in the right part and produce a corresponding loss
value according to predicted error. Then, the champion indi-
vidual subset W̃ is selected according to the loss of W B

=

(W B
1 ,W B

2 , . . . ,W B
N) in ‘‘c’’, and its subset combination is traversed

repeatedly. Finally, as is shown in the red dotted box, a new at-
tention wights is rebuilt and W B

k , the new-generation population,
is produced.

Random operators as an improved crossing-over operator
based on evolutionary computation are introduced to illustrate

how population space is rebuilt in ‘‘d’’. In the red dotted box in
Fig. 1, if the selected champion individual combination is W B

i and
W B

j where each individual is composed of binary strings, they
will be evenly divided into L segments in line with L, the time
step defined in Section 3.1. Then, the corresponding W B

i can be
expressed by W B

i = (S1i , S
2
i , . . . , S

L
i) where S1i is a segment of W B

i .
Two important operators are described as follows:

• Randomly select. Firstly, we define this operator as Λ(·). Its
function is to randomly select subsegments in each cham-
pion combination. For instance, in Fig. 1, the subsegment
L − 1 of the two subspaces are selected. It should be noted
that the number of selected subsection is not fixed.
• Recombine. This operator can be expressed as Γ (·). It is

defined to recombine the genes in the selected subsegment.
The process interchanges the two subsegments expressed
by binary codes with the length of 6 and from different
subspaces in either even or odd index. sL−1i and sL−1j will
generate sL−1k after Γ (·). It should also be noted that the
figure only displays interchange in the even index, but the
index where actual interchanges happen is decided by the
random judgment of Γ (·).

Due to the improved crossing-over operator has integrated more
random mechanisms to maintain the difference among child gens
so as to avoid a early algorithm convergence and be trapped in
local optimum, compared with the single-point or multi-point
crossover and other traditional crossover operators in traditional
genetic algorithm.

Furthermore, after the abovementioned two steps, we have
adopted the simple mutation operator which achieves mutation
operation by randomly assigning, on the individual coded string,
a digit or several digits of values on the gene locus based on
mutation rate. The simple mutation operator is named as M(·)
in our paper. Specifically, the operator M(·) is set to reverse the

4 Y. Li, Z. Zhu, D. Kong et al. / Knowledge-Based Systems 181 (2019) 104785

genotype of the newly generated sL−1k in a random index. For in-
stance, 0 is reversed to 1. Finally, sL−1k replaces the corresponding
sL−1i in W B

i , forming W B
k which is inserted into W . When rebuild-

ing population, we will repeatedly traverse champion individual
subset W̃ until the size of W has reached the default value N . The
key factor in the CRS is the error feedback introduced from the
right network in Fig. 1. The CRS is demonstrated in the optimizing
issue as follows:

min L(ỹT (Θ(F ,W)), yT) (11)

where F are entire parameters in LSTM and Θ(·) is the parameter
space needed when obtaining the predicted value ỹT . The most
important operator is the rebuilding process which can deter-
mines the performance significantly by controlling the direction
of the random searching. Algorithm 1 outlines the competitive
random search.

Algorithm 1 Competitive Random Search

Input:
N: size of attention weights set, T : epochs , W̃ : champion at-
tention weights subset with the size of Ñ , L = (L1, L2, ..., LN):
loss of each Wi ∈ W

Output:
W : attention weights set

1: while t < T do
2: if t = 0 then
3: W ←(W1,W2, ...,WN)
4: else
5: W̃ ←Ranking(Wi|Li, Ñ)
6: W ← ∅
7: while length(W) < N do
8: W ← W̃
9: for (Wi,Wj) ∈ W̃ do

10: Wk ← M(Γ (Λ(Wi,Wj)))
11: end for
12: W ← Wk
13: end while
14: end if
15: end while

3.4. Parameters transferring

To train our model, we proposed a collaborative mechanism
which combines EA-LSTM with the competitive random search.
The idea of collaborative training is to share the parameters and
loss feedback between the two components of the model. We
use mini-batch stochastic gradient decent (SGD) together with
Adam optimizer [27] to train EA-LSTM. Except for attention layer,
the other parameter in LSTM can be learned by standard back
propagation through time algorithm with mean squared error
and cross entropy loss as the objective function. Meanwhile, the
attention weights outputted by competitive random search will
be fed into attention layer before the LSTM begin to be trained.
In addition, the current prediction loss of the LSTM in validation
set will be used to rank the individual in population.

4. Experiments

In this section, a description of the data set used in our study
is first given. Then we will introduce the parameter settings and
display the training results of EA-LSTM. Furthermore, we compare
our proposed model to some baseline models such as SVR, GBRT,
RNN, GRU and LSTM. In addition, some attention-based meth-
ods also serve as competitors to verify the performance of our
proposed model.

Table 1
Target value statistics and partition settings for two regression datasets.
Dataset Sensors Train/Valid Test mean std min max

PM2.5 8 28,032/7,008 8,760 94.01 92.25 0 994
SML 16 2,880/720 537 20.15 3.31 11.08 28.55

4.1. Datasets description and setting

For the performance of the proposed model on different types
of time series prediction tasks, the data sets used in our experi-
ments are as follows:

• Beijing PM2.5 Data1 (PM2.5). The dataset [28] contains
PM2.5 data from the US Embassy in Beijing and an hourly
sampling rate from January 1, 2010 to December 31, 2014.
At the same time, it also includes meteorological data of
Beijing Capital International Airport. Its sensor data such as
current time, PM2.5 concentration, dew point, temperature,
pressure, wind direction, wind speed, hours, rain hours. The
PM2.5 concentration is the target value predicted in the
experiment.
• SML20102 (SML). It is a uci open dataset [29] for indoor

temperature prediction. The dataset was collected from a
surveillance system installed in the house. It corresponds
to approximately 40 days of monitoring data. The data is
sampled every minute with a calculation and upload time
of 15 min. The sensor data we use includes current time,
weather forecast temperature, carbon dioxide, relative hu-
midity, lighting, rain, sun dusk, wind, sun light in west
facade, sun light in east facade, sun light in south facade,
sun irradiance, Enthalpic motor 1 and 2, Enthalpic motor
turbo, outdoor temperature, outdoor relative humidity, and
day of the week. The room temperature is the target value
to predict in our experiments.
• MSR Action3D Dataset3 (MSR). MSR Action3D dataset con-

tains twenty actions: high arm wave, horizontal arm wave,
hammer, hand catch, forward punch, high throw, draw x,
draw tick, draw circle, hand clap, two hand wave, side-
boxing, bend, forward kick, side kick, jogging, tennis swing,
tennis serve, golf swing, pick up and throw. There are 10
subjects, each subject performs each action 2 or 3 times.
There are 567 depth map sequences in total. The resolution
is 320 × 240. The data was recorded with a depth sensor
similar to the Kinect device.

The settings for the PM2.5 and SML dataset are given in
Table 1. In addition, for MSR dataset, we follow the standard
settings provided in [4] and calculate the average accuracy for
comparison.

4.2. Parameter settings and sensitivity

There are three parameters in the basic LSTM model, i.e., the
number of time steps L and the size of hidden units for each layers
in LSTM m (we set the same hidden units for each layer in LSTM)
and the batchsize b in training process. We carefully tuned the
parameters L (time-steps), m (hidden units number) and b (batch-
size) for our basic model. To approximate the best performance of
the model, we conducted a grid search over L ∈ {3, 6, 12, 18, 24},
m ∈ {16, 32, 64, 128, 256}, b ∈ {64, 128, 256, 512, 1024} in
the Beijing PM2.5 dataset and L ∈ {6, 12, 18, 24, 36}, m ∈

1 http://archive.ics.uci.edu/ml/datasets/Beijing+PM2.5+Data.
2 http://archive.ics.uci.edu/ml/datasets/SML2010.
3 http://research.microsoft.com/en-us/um/people/zliu/actionrecorsrc/.

http://archive.ics.uci.edu/ml/datasets/Beijing+PM2.5+Data
http://archive.ics.uci.edu/ml/datasets/SML2010
http://research.microsoft.com/en-us/um/people/zliu/actionrecorsrc/

Y. Li, Z. Zhu, D. Kong et al. / Knowledge-Based Systems 181 (2019) 104785 5

Table 2
Hyperparameters for LSTM in each dataset.
Dataset Time-Steps Units Batchsize

Beijing PM2.5 18 128 256
SML 2010 24 128 128
MSR Action3D 13 128 16

{16, 32, 64, 128, 256}, b ∈ {64, 128, 256, 512, 1024} in the
SML2010 dataset and m ∈ {16, 32, 64, 128}, b ∈ {8, 16, 32, 64} in
the MSR Action3D dataset. It should be noted that in MSR dataset
we set the number of frames in each sample as the L. When one
parameter varies, the others are fixed. Finally, we achieved the
hyperparameter with the best performance on the validation set
to fix the basic model structure. The box plot drawn in Fig. 2 is
used to show the sensitivity of the parameters to the two datasets
used for the regression task.

The root means squared error for the time series task with
one box-whisker (showing middle value, 25% and 75% quan-
tiles, minimum, maximum and outliers) for five testing results
of the basic model we proposed. After grid searching, we de-
fine the hyperparameters used in EA-LSTM with the best ones.
The hyperparameters of LSTM in different datasets are given in
Table 2.

Furthermore, there are four hyperparameters in competitive
random search, i.e., the size of attention weights set N , the en-
coding length for each attention weights, the size of champion
attention weights subset W̃ and the number of epochs T . To
balance the solving efficiency, we defined size of optimization
space as 36, encoding length for each subspace as 6 which varies
from 0.016 to 1.000, the size of W̃ as 6, and the number of epochs
T as 20.

4.3. Evaluation metrics

To evaluate the performance, we take the Root Mean Squared
Errors (RMSE) [30] and Mean Absolute Errors (MAE) as the eval-
uation metrics. They are calculated by the following.

RMSE =

√ 1
N

N∑
i=1

(ỹit − yit)2 (12)

MAE =
1
N

N∑
i=1

|ỹit − yit | (13)

where ỹit is prediction, yit is real value and N is the number of
testing samples.

4.4. Training attention layer

We trained the EA-LSTM with Competitive random search for
20 epochs. Training processes are visualized in Fig. 3. In addi-
tion, the points drawn in Fig. 3 indicate the error and accuracy
corresponding to the weights selected in champion individual
subset W̃ . We can find that training with the CRS, attention
weights in optimization space continuously improve the per-
formance and not be trapped. Meanwhile, to better understand
importance-based sampling of input series within time steps, the
most suitable attention weights are visualized by heat map and
showed in Fig. 4. In addition, varied scale of attention distribution
of input driving series within multiple time steps over each
datasets are showed as well. By solving attention weights which
can better suits for the characteristics across different tasks, we
improve the performance of the LSTM and get better prediction
results. In addition, we can also find that the proposed method

Table 3
Performance of different baseline methods compared in two datasets for
Regression Tasks.
Model Datasets

Beijing PM2.5 SML2010

MAE RMSE MAE RMSE

SVR 2.6779 2.8623 0.0558 0.0652
GBRT 0.9909 1.0576 0.0253 0.0327
RNN 0.8646 0.9621 0.0261 0.0367
GRU 0.6733 0.7433 0.0231 0.0288
LSTM 0.6168 0.7026 0.0178 0.0234
Attention-LSTM 0.2324 0.3619 0.0190 0.0225
DA-RNN [11] – – 0.0150 0.0197
EA-LSTM 0.1902 0.2755 0.0103 0.0154

effectively utilize local information within one sampling window
according to varied scale of attention distribution in Fig. 4. It is
crucial to make a soft feature selection in multiple time steps time
series prediction.

4.5. Performance comparison

To evaluate the performance of the EA-LSTM training with
competitive random search in time series prediction, we com-
pared comparative experiments with other baseline methods,
including traditional machine learning methods and deep learn-
ing methods. In the experiment, the SVR, GBRT, RNN, LSTM and
GRU as competitors were carefully tuned respectively. In addition,
all of the baseline methods we compared were trained and tested
five times, and the final predictions were shown in Table 3 to
reduce random errors on average. We can see that the proposed
method effectively improves the performance of the baseline
counterparts in the public open benchmarking dataset used in
time series prediction.

Furthermore, we also compared the proposed method with
DA-RNN [11] in our public testing dataset: SML 2010. It should
be noted that aiming to make a more fair comparison to DA-
RNN, an unopen-sourced model, we can only test it on our public
dataset. Specifically, DA-RNN, which is similar to the traditional
attention-based model, is a time series predictive model trained
by solving the network parameters together with attention-layer
parameters. As a matter of fact, this model obtained the state-of-
the-art performance by constructing a more complex attention
mechanism. With the dataset identically classified into sets for
training, validating, and testing, the experimental results show
that the EA-LSTM can get a higher predicted precision. We can
also see that there is the feasibility to enhance attention-based
model by improving training method for attention layer not only
by introducing a more complex attention mechanism.

In addition, we compared the proposed method with the same
method whose optimization method is replaced with gradient
descent which named ‘‘Attention-LSTM’’ to clearly highlight the
benefit of using the competitive random search, instead of gradi-
ent descent. Specifically, an input-attention layer whose weights
are learned together with other parameters is introduced to
LSTM. The experimental results clearly highlight the benefit of
using the evolutionary computation inspired competitive random
search to refrain from being trapped into partial optimization
effectively, instead of gradient descent.

Moreover, we also add a comparison between our proposed
model and some baseline ones by human action recognition
experiments, a typical time series prediction task for testing the
ability to take temporal modeling of different methods. Specifi-
cally, the MSR Action3D dataset is a benchmark dataset widely
used in human action recognition tasks in the field of computer
vision. We quote several state of the art methods proposed in

6 Y. Li, Z. Zhu, D. Kong et al. / Knowledge-Based Systems 181 (2019) 104785

Fig. 2. Parameter Sensitivity of Beijing PM2.5 Dataset and SML2010.

Fig. 3. The training process of Competitive Random Search. The points plotted in the figure represent the error calculation results for each weight in the champion
individual subset W̃ for each epoch. There are six champion individuals with blue spot, and the best individuals have red spots in each of the figures. It should be
noted that the points in the third sub-picture show the accuracy curve of the EA-LSTM. In addition, we can see that with the iteration of the search, the prediction
accuracy gradually increases and shows good convergence. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

Fig. 4. The attentional distribution map for each experimental dataset, where the coordinates represent the time step of the input driving series and the colors
represent the weight of the attention (lighter color, greater weight). (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)

Y. Li, Z. Zhu, D. Kong et al. / Knowledge-Based Systems 181 (2019) 104785 7

Table 4
Experimental results on the MSR Action3D dataset.
Methods Accuracy/%

[31] 91.26
[32] 92.46
HBRNN [4] 94.49
LSTM 90.67
Attention-LSTM 92.58
EA-LSTM 95.20

CVPR to verify that our proposed model can maintain a high level
of performance in more fields. The experimental results testify
that the proposed method also delivers robust performance even
in classification prediction tasks (see Table 4).

5. Conclusion

This paper proposes an evolutionary attention-based LSTM
model (EA-LSTM), which is trained with competitive random
search for time series prediction. During temporal relationship
mining, the parameters of attention layer for importance-based
sampling in the proposed EA-LSTM can be confirmed. Therefore,
the network is able to correctly resolve local feature relationships
within the time step. As a hard optimization problem that ap-
proximates the best attention weights of the actual input driving
series data, our proposed CRS method can avoid being trapped
during parameter solving. Experiments have shown that EA-LSTM
can provide competitive predictive performance compared to
the state-of-the-art methods. These results show that the use of
competitive random search to train evolutionary attention-based
LSTM not only helps to capture long-term dependence in time
series prediction, but also can effectively utilize local information
in a sampling window according to different scales of attention
distribution. In addition, taking genetic algorithm as an example,
this paper introduces evolutionary computation into deep neural
networks, and has achieved good performance. For future work,
parallel computing will be introduced to increase efficiency, and
more studies inspired by biological rules will also be employed
to improve the performance of deep neural networks.

Acknowledgments

The work was supported in part by National Key Research
and Development of China (NO. 2016YFB0800404), National Nat-
ural Science Foundation of China (No. 61572068, No. 61532005),
Special Program of Beijing Municipal Science & Technology Com-
mission (No. Z181100000118002), the Strategic Priority Research
Program of Chinese Academy of Science (No. XDB32030200), and
the Fundamental Research Funds for the Central Universities of
China (No. 2018YJS032).

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

References

[1] Luchen Liu, Jianhao Shen, Ming Zhang, Zichang Wang, Jian Tang, Learning
the joint representation of heterogeneous temporal events for clinical
endpoint prediction, in: Proceedings of the Thirty-Second AAAI Conference
on Artificial Intelligence, 2018, pp. 109–116.

[2] Wei Cao, Liang Hu, Longbing Cao, Deep modeling complex couplings within
financial markets, in: Proceedings of the Twenty-Ninth AAAI Conference on
Artificial Intelligence, 2015, pp. 2518–2524.

[3] Pierre Hulot, Daniel Aloise, Sanjay Dominik Jena, Towards station-level
demand prediction for effective rebalancing in bike-sharing systems,
in: Proceedings of the 24th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, 2018, pp. 378–386.

[4] Yong Du, Wei Wang, Liang Wang, Hierarchical recurrent neural net-
work for skeleton based action recognition, in: Proceedings of the 2015
IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp.
1110–1118.

[5] G. Udny Yule, On a method of investigating periodicities in disturbed
series, with special reference to Wolfer’s sunspot numbers, Phil. Trans.
R. Soc. Lond. 226 (226) (1927) 267–298.

[6] G.E.P. Box, Davida Pierce, Distribution of residual autocorrelations in
autoregressive-integrated moving average time series models, Publ. Am.
Stat. Assoc. 65 (332) (1968) 1509–1526.

[7] Harris Drucker, Christopher J.C. Burges, Linda Kaufman, Alexander J. Smola,
Vladimir Vapnik, Support vector regression machines, in: Proceedings of
Conference on Neural Information Processing Systems 1996, 1996, pp.
155–161.

[8] Kristina Davoian, Wolfram-Manfred Lippe, Time series prediction with
parallel evolutionary artificial neural multi-order, in: Proceedings of the
2007 IEEE International Conference on Data Mining, 2007, pp. 10–15.

[9] Xia Li, Ruibin Bai, Freight vehicle travel time prediction using gradient
boosting regression tree, in: Proceedings of the 2016 IEEE International
Conference on Machine Learning and Applications, 2016, pp. 1010–1015.

[10] Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma,
Qiwei Ye, Tie-Yan Liu, Lightgbm: A highly efficient gradient boosting deci-
sion tree, in: Proceedings of Conference on Neural Information Processing
Systems 2017, 2017, pp. 3149–3157.

[11] Yao Qin, Dongjin Song, Haifeng Chen, Wei Cheng, Guofei Jiang, Garrison W.
Cottrell, A dual-stage attention-based recurrent neural network for time
series prediction, in: Proceedings of the twenty-sixth International Joint
Conference on Artificial Intelligence, 2017, pp. 2627–2633.

[12] David E. Rumelhart, Geoffrey E. Hinton, Ronald J. Williams, Learning
representations by back-propagating errors, Nature 323 (6088) (1986)
533–536.

[13] Sepp Hochreiter, Jürgen Schmidhuber, Long short-term memory, Neural
Computation 9 (8) (1997) 1735–1780.

[14] Kyunghyun Cho, Bart van Merrienboer, Dzmitry Bahdanau, Yoshua Ben-
gio, On the properties of neural machine translation: Encoder–decoder
approaches, in: Proceedings of the 2014 Conference on Empirical Methods
in Natural Language Processing, 2014, pp. 103–111.

[15] Kyunghyun Cho, Bart van Merrienboer, Çaglar Gülçehre, Dzmitry Bahdanau,
Fethi Bougares, Holger Schwenk, Yoshua Bengio, Learning phrase repre-
sentations using RNN encoder–decoder for statistical machine translation,
in: Proceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing, 2014, pp. 1724–1734.

[16] Dzmitry Bahdanau, Kyunghyun Cho, Yoshua Bengio, Neural machine
translation by jointly learning to align and translate, 2014, arXiv:1409.
0473.

[17] Jiasen Lu, Caiming Xiong, Devi Parikh, Richard Socher, Knowing when to
look: Adaptive attention via a visual sentinel for image captioning, in:
Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern
Recognition, 2017, pp. 3242–3250.

[18] Zhou Yu, Jun Yu, Jianping Fan, Dacheng Tao, Multi-modal factorized
bilinear pooling with co-attention learning for visual question answering,
in: Proceedings of the 2015 IEEE International Conference on Computer
Vision, 2017, pp. 1839–1848.

[19] Suyoun Kim, Takaaki Hori, Shinji Watanabe, Joint ctc-attention based end-
to-end speech recognition using multi-task learning, in: Proceedings of
the 2017 IEEE International Conference on Acoustics, Speech and Signal
Processing, 2017, pp. 4835–4839.

[20] Yuxuan Liang, Songyu Ke, Junbo Zhang, Xiuwen Yi, Yu Zheng, Geoman:
Multi-level attention multi-order for geo-sensory time series prediction,
in: Proceedings of the Twenty-Seventh International Joint Conference on
Artificial Intelligence, 2018, pp. 3428–3434.

[21] John H. Holland, Genetic algorithms and the optimal allocation of trials,
SIAM J. Comput. 2 (2) (1973) 88–105.

[22] X. Zhang, J. Clune, K.O. Stanley, On the relationship between the OpenAI
evolution strategy and stochastic gradient descent, 2017, arXiv:1712.
06564.

[23] E. Conti, V. Madhavan, F. Petroski Such, J. Lehman, K.O. Stanley, J. Clune,
Improving exploration in evolution strategies for deep reinforcement
learning via a population of novelty-seeking agents, 2017, arXiv:1712.
06560.

[24] Joel Lehman, Jay Chen, Jeff Clune, Kenneth O. Stanley, Safe mutations for
deep and recurrent neural multi-order through output gradients, 2017,
arXiv:1712.06563.

[25] Klaus Greff, RupeshKumar Srivastava, Jan Koutník, Bas R. Steunebrink,
Jürgen Schmidhuber, LSTM: A search space odyssey, IEEE Trans. Neural
Netw. Learn. Syst. 28 (10) (2017) 2222–2232.

http://refhub.elsevier.com/S0950-7051(19)30240-0/sb5
http://refhub.elsevier.com/S0950-7051(19)30240-0/sb5
http://refhub.elsevier.com/S0950-7051(19)30240-0/sb5
http://refhub.elsevier.com/S0950-7051(19)30240-0/sb5
http://refhub.elsevier.com/S0950-7051(19)30240-0/sb5
http://refhub.elsevier.com/S0950-7051(19)30240-0/sb6
http://refhub.elsevier.com/S0950-7051(19)30240-0/sb6
http://refhub.elsevier.com/S0950-7051(19)30240-0/sb6
http://refhub.elsevier.com/S0950-7051(19)30240-0/sb6
http://refhub.elsevier.com/S0950-7051(19)30240-0/sb6
http://refhub.elsevier.com/S0950-7051(19)30240-0/sb12
http://refhub.elsevier.com/S0950-7051(19)30240-0/sb12
http://refhub.elsevier.com/S0950-7051(19)30240-0/sb12
http://refhub.elsevier.com/S0950-7051(19)30240-0/sb12
http://refhub.elsevier.com/S0950-7051(19)30240-0/sb12
http://refhub.elsevier.com/S0950-7051(19)30240-0/sb13
http://refhub.elsevier.com/S0950-7051(19)30240-0/sb13
http://refhub.elsevier.com/S0950-7051(19)30240-0/sb13
http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1409.0473
http://refhub.elsevier.com/S0950-7051(19)30240-0/sb21
http://refhub.elsevier.com/S0950-7051(19)30240-0/sb21
http://refhub.elsevier.com/S0950-7051(19)30240-0/sb21
http://arxiv.org/abs/1712.06564
http://arxiv.org/abs/1712.06564
http://arxiv.org/abs/1712.06564
http://arxiv.org/abs/1712.06560
http://arxiv.org/abs/1712.06560
http://arxiv.org/abs/1712.06560
http://arxiv.org/abs/1712.06563
http://refhub.elsevier.com/S0950-7051(19)30240-0/sb25
http://refhub.elsevier.com/S0950-7051(19)30240-0/sb25
http://refhub.elsevier.com/S0950-7051(19)30240-0/sb25
http://refhub.elsevier.com/S0950-7051(19)30240-0/sb25
http://refhub.elsevier.com/S0950-7051(19)30240-0/sb25

8 Y. Li, Z. Zhu, D. Kong et al. / Knowledge-Based Systems 181 (2019) 104785

[26] Alex Graves, Supervised sequence labelling with recurrent neural multi-
order, in: Studies in Computational Intelligence, Vol. 385, Springer,
2012.

[27] Diederik P. Kingma, Jimmy Ba Adam, A method for stochastic optimization,
2014, arXiv:1412.6980.

[28] Xuan Liang Huang, Tao Zou, Bin Guo, Shuo Li, Haozhe Zhang, Shuyi Zhang,
Hui Huang, Xi Chen Song, Assessing Beijing’s PM2.5 pollution: severity,
weather impact, APEC winter heating, Proc. R. Soc. A Math. Phys. Eng. Sci.
471 (2182) (2015) 20150257.

[29] F. Zamora-Martínez, P. Romeu, P. Botella-Rocamora, J. Pardo, On-line learn-
ing of indoor temperature forecasting models towards energy efficiency,
Energy Build. 83 (2014) 162–172.

[30] Mark Plutowski, Garrison W. Cottrell, Halbert White, Experience with
selecting exemplars from clean data, Neural Multi-order 9 (2) (1996)
273–294.

[31] Mohammad Abdelaziz Gowayyed, Marwan Torki, Mohamed Elsayed
Hussein, Motaz El-Saban, Histogram of oriented displacements (HOD): de-
scribing trajectories of human joints for action recognition, in: Proceedings
of the 23rd International Joint Conference on Artificial Intelligence, 2013,
pp. 1351–1357.

[32] Raviteja Vemulapalli, Felipe Arrate, Rama Chellappa, Human action recog-
nition by representing 3d skeletons as points in a lie group, in: Proceedings
of the 2014 IEEE Conference on Computer Vision and Pattern Recognition,
2014, pp. 588–595.

http://refhub.elsevier.com/S0950-7051(19)30240-0/sb26
http://refhub.elsevier.com/S0950-7051(19)30240-0/sb26
http://refhub.elsevier.com/S0950-7051(19)30240-0/sb26
http://refhub.elsevier.com/S0950-7051(19)30240-0/sb26
http://refhub.elsevier.com/S0950-7051(19)30240-0/sb26
http://arxiv.org/abs/1412.6980
http://refhub.elsevier.com/S0950-7051(19)30240-0/sb28
http://refhub.elsevier.com/S0950-7051(19)30240-0/sb28
http://refhub.elsevier.com/S0950-7051(19)30240-0/sb28
http://refhub.elsevier.com/S0950-7051(19)30240-0/sb28
http://refhub.elsevier.com/S0950-7051(19)30240-0/sb28
http://refhub.elsevier.com/S0950-7051(19)30240-0/sb28
http://refhub.elsevier.com/S0950-7051(19)30240-0/sb28
http://refhub.elsevier.com/S0950-7051(19)30240-0/sb29
http://refhub.elsevier.com/S0950-7051(19)30240-0/sb29
http://refhub.elsevier.com/S0950-7051(19)30240-0/sb29
http://refhub.elsevier.com/S0950-7051(19)30240-0/sb29
http://refhub.elsevier.com/S0950-7051(19)30240-0/sb29
http://refhub.elsevier.com/S0950-7051(19)30240-0/sb30
http://refhub.elsevier.com/S0950-7051(19)30240-0/sb30
http://refhub.elsevier.com/S0950-7051(19)30240-0/sb30
http://refhub.elsevier.com/S0950-7051(19)30240-0/sb30
http://refhub.elsevier.com/S0950-7051(19)30240-0/sb30

	EA-LSTM: Evolutionary attention-based LSTM for time series prediction
	Introduction
	Preliminaries
	Methodology
	Overview
	Temporal modeling with EA–LSTM
	Competitive random search
	Parameters transferring

	Experiments
	Datasets description and setting
	Parameter settings and sensitivity
	Evaluation metrics
	Training attention layer
	Performance comparison

	Conclusion
	Acknowledgments
	Declaration of competing interest
	References

