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Abstract
Time series forecasting is ubiquitous in various scientific and industrial domains. Powered by recurrent and convolutional

and self-attention mechanism, deep learning exhibits high efficacy in time series forecasting. However, the existing

forecasting methods are suffering some limitations. For example, recurrent neural networks are limited by the gradient

vanishing problem, convolutional neural networks cost more parameters, and self-attention has a defect in capturing local

dependencies. What’s more, they all rely on time invariant or stationary since they leverage parameter sharing by repeating

a set of fixed architectures with fixed parameters over time or space. To address the above issues, in this paper we propose a

novel time-variant framework named Self-Attention-based Time-Variant Neural Networks (SATVNN), generally capable

of capturing dynamic changes of time series on different scales more accurately with its time-variant structure and

consisting of self-attention blocks that seek to better capture the dynamic changes of recent data, with the help of Gaussian

distribution, Laplace distribution and a novel Cauchy distribution, respectively. SATVNN obviously outperforms the

classical time series prediction methods and the state-of-the-art deep learning models on lots of widely used real-world

datasets.

Keywords Multi-step time series forecasting � Self-attention � Time variant � Recent changes in data � Different scales
changes in data

1 Introduction

Time series forecasting is recognized as establishing an

appropriate prediction model for sequences arranged in

chronological order to make the most of complex sequen-

tial dependencies [1]. To date, a considerable amount of

literature has been published to solve this prediction

problem that has attracted much attention. As representa-

tive of statistical regression methods, auto-regression (AR)

model and its variant auto-regressive moving average

(ARMA) model which is composed of an auto-regressive

model and a moving average model are well known for

time series forecasting. However, the disadvantage of AR

and ARMA approach referenced above and another fore-

casting method [2] is that it is difficult for them to capture

the nonlinear dynamics of time series. Machine learning

methods are a major solution in the field of time series

forecasting. Many researchers are committed to developing

nonlinear models in a variety of ways to address time series

forecasting problem such as time series prediction model

based on kernel method [3], ensemble method [4] and

Gaussian processes [5]; however, these methods may not

properly capture the real potential nonlinear relationships

due to employing a predefined nonlinear form.

Recently, there is a growing body of literature that

recognizes the importance of addressing the issue of time
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series forecasting with deep learning methods. A recurrent

neural network (RNN) is famous for sequence modeling

due to its ability in capturing nonlinear relationships.

Proceeding from significant analysis of [6] and a great

many researches, it can be concluded that RNN is easy to

cause a vanishing gradient problem. Long short-term

memory neural network (LSTM) is of great significance

because it makes the first attempt to alleviate vanishing

gradient problem in RNN [7–9]. However, the issue still

remains unresolved. As an example, [10] indicated that the

effective context size of the language model using LSTM

was about 200 tokens on average, but can only clearly

distinguish 50 tokens nearby, showing that even LSTM

was difficult to capture long-term dependencies. Inspired

by some successful applications appeared in machine

translation, the overwhelming majority of researches

commented that sequence-to-sequence (Seq2Seq) model

[11] effectively encoded the input information, which was

conductive to time series forecasting.

More recently, there has been a surge of interest in

framework based solely on attention mechanisms [12]. Its

architecture is similar to Seq2Seq, but far superior to

Seq2Seq in terms of parallel computing and long-term

dependency modeling. The work proposed by [12] con-

cluded that the attention mechanisms effectively modeled

dependencies of sequences without being affected by dis-

tance, which was particularly suitable for capturing recur-

ring patterns. However, self-attention has a weakness in

dispersing the distribution of attention because all the

signals are considered simultaneously by weighted aver-

aging, which hinders its ability to capture local depen-

dencies of sequences. To address this issue, [13] presented

a Gaussian Transformer model for natural language infer-

ence to effectively capture the importance of words in the

context and achieved competitive performance on the

SNLI dataset. Despite the fact that Gaussian prior distri-

bution effectively enhances the impact of adjacent words,

the importance of non-adjacent words rapidly tends to zero,

which limits the contribution of the important non-adjacent

words to the current word representation. The prior distri-

bution of the distance-based self-attention network pro-

posed by [14] is essentially a Laplace prior distribution.

The success of Laplace prior distribution lies in the

unlimited expression of non-adjacent words; however, the

importance of adjacent words is not prominent enough.

Similarly, as far as time series forecasting is concerned, the

historical data of the time series will have different refer-

ence values for future forecasts due to different degrees of

old and new data. In order to improve the prediction

accuracy, we hope to utilize different weights to measure

the reference value of historical data. The newer the data,

the higher the reference values and the higher the weights.

Therefore, in addition to natural language inference, a

variant self-attention mechanism that can capture local

dependencies is also applicable to time series tasks.

Recent advances in time-variant methods have facili-

tated the investigation of time series forecasting problem.

A recently published article [15] threw doubt on the orig-

inal structure of RNN. This study set out to shine new light

on time-variant debates through an examination of the time

invariant. Time-variant neural networks overcome the

shortcoming of network parameters being used repeatedly

at each time step and make the prediction more accurate.

However, time-variant neural networks begin to expose

their defects in capturing the recent trend of nonlinear time

series.

To address these challenges, we propose a Self-Atten-

tion-based Time-Variant Neural Network (SATVNN)

which utilizes its overall framework to provide a time-

variant model. Additionally, interleaved outputs of

SAVNN assist in mitigating vanishing gradients. What is

more, a self-attention block as SATVNN’ score component

is designed to capture local dependencies of temporal data,

in which Gaussian self-attention, Laplace self-attention and

a novel Cauchy self-attention are, respectively, proposed to

enable the proposed framework to capture recent changes

in temporal data.

In summary, the key contributions of this paper are as

follows:

• We investigate the challenges of time series forecasting

and propose a Self-Attention-based Time-Variant Neu-

ral Network (SATVNN) framework. Compared with

the existing time series prediction models, the proposed

framework can capture the dynamic changes of time

series on different scales, especially in capturing the

dynamic changes of the recent data.

• A novel time-variant structure is constructed to better

learn the dynamics at different scales that span multiple

time steps and to mitigate vanishing gradient problem.

• A novel Self-Attention block with three different

distributions is designed to reflect recent changes in

temporal data, among which a novel Cauchy self-

attention mechanism achieves better results than the

Gaussian self-attention and the Laplace self-attention.

• Extensive experiments are conducted on some widely

used complex seasonal time-series datasets to evaluate

our proposed SATVNN framework. The results indicate

that our method yields higher prediction accuracy

compared with other state-of-the-art methods.

The remainder of this paper is organized as follows. Sec-

tion 2 reviews some related works. Section 3 provides the

details of our SATVNN framework employed in the study.

Section 4 presents the experimental evaluations. Section 5

concludes the paper with the way forward.
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2 Related work

Multi-step time series forecasting is in sharp contrast with

one-step-ahead forecasting [16–18]. It often suffers from

the cumulative errors [19]. Recently, a considerable

amount of methods based on RNNs and their variants have

been proposed to improve the prediction results of multi-

step time series. [20] introduced a framework named

DeepAR, which used an auto-regressive recurrent network

architecture to produce probabilistic forecasts. In contrast,

[21] leveraged RNN to map the features to the parameters

of the state-space model, which then devoted to predicting

the probability distribution of the values at each time step

in the sequence. [22] divided the factors that affect the

prediction results into random effect and fixed effect,

estimated the two factors using different models and then

coupled them together to get the final predicted values.

Notwithstanding, it is well known that due to the recursive

nature of RNNs, the problem of vanishing gradients is

prone to occur, which makes it difficult for RNNs to cap-

ture long temporal patterns [23].

Seq2Seq has been used in many investigations and

studies to capture long-term dependencies [24]. [25] pro-

posed a model for the efficient learning of nonlinear

dynamics using a higher-order tensor RNN. [26] presented

a multi-horizon quantile prediction model based on the

Seq2Seq framework, which is dedicated to solving the

regression problem of large-scale time series. [27] pre-

sented a loss function called shape and time distortion and

combined with Seq2Seq to solve the problem of multi-step

prediction on non-stationary signals. [28] built a model to

predict extreme event. The main idea of this model was to

divide the uncertainty into model uncertainty and forecast

uncertainty. It is worth noting that Transformer has

received increased attention across many disciplines in

recent years. Its architecture is similar to Seq2Seq, but far

outperforms Seq2Seq in term of parallel computing and

long-term dependencies modeling.

Transformer has been widely used in many fields such

as neural machine translation [29–32], natural language

inference [33–35], recommendation [36–39], abstractive

summarization [40–43] and so on. Due to its excellent

performance, Transformer has led to the successful appli-

cation for time series forecasting. [44] used the Trans-

former to predict influenza-like illness (ILI). [45] designed

a unique structure with a dual self-attention network for

forecasting multivariate time series. [46] designed a model

called SAnD, the main component of which is a self-at-

tention mechanism. The SAnD model also employed dense

interpolation and positional encoding to incorporate tem-

poral orders. We notice that the proposal of the Trans-

former algorithm inspires a new idea for time series

prediction, but there is still room for improvement in

capturing local dependencies [47].

There is another tendency for academics to devote some

focus to the time-variant models. [15] utilized a feed-for-

ward neural network for multi-step time series forecasting.

The novelty is that its architecture breaks the traditional

modeling architectures such as RNN or CNN. Specifically,

its parameters and structure change over time, which makes

the model not time invariant. In spite of the unique struc-

ture of the time-variant model being proven to be effective,

its ability to capture recent trends in complex time series is

insufficient.

At the best of our knowledge, it is paramount to propose

a method to alleviate or solve the problems mentioned

above, so as to make a more accurate prediction. Therefore,

in this article, we contribute with a neural network that

emerges from time-variant framework dedicated to learn-

ing complex dynamic dependencies of time series more

accurately, with three Self-Attention blocks that enhance

the local dynamics learning ability, named as Self-atten-

tion-based Time-Variant Neural Networks (SATVNN).

3 Self-attention-based time-variant neural
networks

3.1 Problem statement

In this section, we give the formulation of the problem.

Time series forecasting usually uses a series of historical

values as input. We use b to denote the seasonal period of a

given time series. A sliding window of length 3b is utilized

to extract samples. The input sequence X can be denoted as

X ¼ xt�2bþ1; xt�2b; . . .; xt, which includes the first 2b data

points of the window. In the scope of this work, the last b
data points constitute the target values, which can be

denoted as Y ¼ yt; ytþ1; . . .; ytþb�1. Typically, the problem

of time series forecasting can be defined as learning a

nonlinear mapping function from the input sequence X to

the predicted values Ŷ , as follows:

Ŷ ¼ f ðXÞ ð1Þ

where f (�) is a nonlinear mapping function.

3.2 Overall framework

To solve above multi-step time series prediction problem,

we propose a framework called Self-Attention-based Time-

Variant Neural Networks (SATVNN). Figure 1 depicts its

overall architecture whose core idea can be summarized as

follows: (1) Construct a novel time-variant structure to

better learn the dynamic changes of time series on different
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scales and mitigate vanishing gradients; (2) Design a Self-

Attention block to model local temporal dependencies of

time series. In the Self-Attention block, Gaussian self-at-

tention, Laplace self-attention and a novel Cauchy self-

attention are, respectively, designed to make the proposed

framework more flexible to reflect recent changes in tem-

poral data.

3.3 Time-variant structure

Inspired by [15], we design a novel time-variant structure

(T-V Structure) to better learn various dynamic scales

across multiple time steps and mitigate vanishing gradients.

As illustrated in Fig. 1, its overall architecture is composed

of three parts, namely a series of inputs, a series of

sequentially connected hidden blocks called Self-Attention

blocks and a series of outputs. Its network structure

between interleaved outputs varies over time in architec-

ture and parameters. The result is that T-V Structure is time

variance. Furthermore, the special interleaved output in

T-V Structure enables the structure to mitigate vanishing

gradient problem. The details of the building parts, Algo-

rithm 1 that shows the procedure of our SATVNN and the

time-variant analysis are described in the following

paragraphs.

3.3.1 Inputs

Given a set of univariate time series X ¼ xt�2bþ1; . . .; xt as

inputs, we feed them into each Self-Attention block in the

middle part of the framework. For each input X 2 RB�L, we

transform it into X0 2 RB�L�din , where B is the batch-size, L

denotes the length of input data and here L ¼ 2b because

the primary goal of our task is to predict the last b data

based on the former 2b data. To provide a richer vector

representation of the input data, we map the dimension of L

from 2b to a higher dimensional space RH by a linear layer,

which is similar to [35]. We take RH as one of the many

hyperparameters and select the best hyperparameter RH

through Section 4.3. We define the last dimension of input

data as din, here din ¼ 1 because the data is univariate. To

sum up, the dimension of input data can be expressed as

X0 2 RB�H�din .

3.3.2 Self-attention block

We build a Self-Attention block (SA-block) to reflect

recent changes in temporal data. As one of the most

important components of the T-V Structure, each SA-block

has its own unique parameters, even if each SA-block’s

architecture is the same. This is mainly because the T-V

Structure is time variance. Figure 2 shows a graphical

illustration of SA-block. It mainly consists of an input

layer, a positional encoding operation, Nx identical layers

Fig. 1 SATVNN framework. Our SATVNN framework is a novel time-variant (T-V) framework. The heterogeneity over a sequence is

represented by Self-Attention blocks (SA-blocks) and outputs of different colors
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and a linear layer. It is worth noting that each identical

layer is mainly composed of two sub-layers: a proposed

self-attention layer and a feed-forward layer. The sub-

layers are stacked by residual connections and normaliza-

tion layers as shown in Add and Norm in Fig. 2.

The input layer aims to map the dimension of input

vector X0 2 RB�H�din to a d-dimension vector through a

fully connected network, which is crucial for SA-block to

employ self-attention mechanism. Because proposed SA-

block architecture does not contain recurrence, the posi-

tional encoding is utilized to encode sequential information

by adding a positional encoding vector to an input vector.

The obtained vector Xinput 2 RB�H�d is then fed into a

stack of Nx identical layers. As a core component of each

identical layer, the self-attention layer is designed to

overcome the shortcoming of the original self-attention that

cannot capture the local temporal dependencies. Its archi-

tecture is illustrated in the left half of Fig. 2. To enable the

framework to better capture recent changes in temporal

data, we, respectively, present three self-attention mecha-

nisms, i.e., Gaussian self-attention, Laplace self-attention

and our proposed Cauchy self-attention. Their core com-

ponents are Gaussian distribution, Laplace distribution and

Cauchy distribution. Compared with other two distribu-

tions, the newly proposed Cauchy distribution is more

suitable for reflecting recent changes in time series.

The reason is summarized as follows: given the same

data, Cauchy distribution can not only broaden the scope of

attention but also avoid the situation that the Gaussian

distribution rapidly approaches zero as the distance

increases. As the distance increases, the distribution value

approaches zero, which means that data with a slightly

longer distance are not important, which affects the accu-

racy of prediction to a certain extent, because there are

some distant data related to the current data in time series.

Furthermore, compared to Laplace distribution, Cauchy

distribution is a more concentrated distribution, which pays

more attention to the more recent data. A more detailed

account of calculation process of the original self-attention

mechanism and three variants of self-attention mechanism

is given as follows.

Original self-attention It is now well established from a

variety of studies that self-attention plays a critical role in

time series prediction. The main calculation flow of the

self-attention can be summarized as mapping a query and a

group of key-value pairs to the output. Formally, given a

input sequence Xinput 2 RB�H�d, the self-attention con-

structs the l-th layer’s hidden states by focusing on the

hidden states in the ðl� 1Þ-th layer.1 The ðl� 1Þ-th layer is

converted into three independent weight matrices, i.e.,

query Ql 2 RB�H�d, key Kl 2 RB�H�d and value Vl 2
RB�H�d as follows:

1 The first layer is an input layer.

Fig. 2 SA-block. Gaussian, laplace and proposed Cauchy self-attention block can reflect recent changes in temporal data. They are mainly

composed of Gaussian, Laplace and Cauchy self-attention layers, respectively
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Ql ¼ WQIl�1; ð2Þ

Kl ¼ WKIl�1; ð3Þ

Vl ¼ WVIl�1; ð4Þ

where Il�1 2 RB�H�d denotes the ðl� 1Þ-th hidden layer,

WQ 2 Rd�d, WK 2 Rd�d and WV 2 Rd�d are trainable

parameters, and their initial values are initialized randomly.

The result Sl Ql;Klð Þ 2 RB�H�H of the inner product of

query and key is considered to be the weights of each

location:

Sl Ql;Klð Þ ¼ Ql Klð ÞT
ffiffiffiffiffi

dk
p ; ð5Þ

where
ffiffiffiffiffi

dk
p

denotes the scaling factor. The aim of
ffiffiffiffiffi

dk
p

is to

prevent the result of inner product from being too large,

entering the saturation domain of the softmax function and

causing the vanishing gradient.

The output of original scaled dot product self-attention

Ol Ql;Kl;Vlð Þ 2 RB�H�d is calculated as a weighted sum of

values as follows:

Ol Ql;Kl;Vlð Þ ¼ softmax Sl Ql;Klð Þ � Dð ÞVl: ð6Þ

Noted that the softmax operation is utilized to normalize

the results to a probability distribution and matrix D 2
RH�H in which all upper triangular elements are set to �1
is used to avoid future information leakage.

From the above explanation, we know that the calcula-

tion of attention is mainly divided into two parts. One is the

calculation of the attention matrix. The attention matrix is

obtained by multiplying K and Q (each row of the attention

matrix represents the attention of each token relative to

other tokens in the sequence, and softmax is added only to

normalize the attention). K and Q are calculated using

different WQ and WK , which can be understood as pro-

jections in different spaces. Due to the projection of dif-

ferent spaces, the generalization ability of the calculated

attention matrix is higher. The other part is to map the

original V to a new space using the attention matrix.

V represents the original sequence, so we multiply the

attention matrix with V to get a weighted result. In other

words, the tokens in V are not related to each other, but

V multiplies the attention matrix makes each token in

V focus on the part of the interest.

Gaussian self-attention To make original self-attention

mechanism have the ability to pay more attention to the

scope of the local region, [13] proposed a Gaussian self-

attention model for natural language inference. Inspired by

this work, we apply Gaussian self-attention to time series

prediction for the first time to reflect recent changes in

temporal data. As shown in the left half of Fig. 2, Gaussian

self-attention is formed by introducing a Gaussian

weighting matrix G(dis) 2 RH�H into the original score

matrix. Relationship weights between data in the obtained

matrix obey the Gaussian distribution. The probability

density of Gaussian distribution is gðdisÞ ¼ e�kdis2 , where k
is a parameter that the position importance decreases with

distance. The position distance between two data is dis.

Specifically, dis = ji� jj denotes the distance between the

ith data and the jth data. Formally, Gaussian self-attention

is as follows:

Sl � GðdisÞ ¼ GðdisÞ þ Ql Klð ÞT
ffiffiffiffiffi

dk
p ; ð7Þ

Ol � GðdisÞ ¼ softmax Sl � GðdisÞ � Dð ÞVl: ð8Þ

Laplace self-attention Although Gaussian self-attention

effectively improves the importance of neighboring data,

the shortcoming of the method is that the importance of

data tends to zero rapidly as the distance increases. Another

important alternative is Laplace self-attention. Similar to

Gaussian self-attention, Laplace weighting matrix can be

denoted as LðdisÞ 2 RH�H , and relationship weights

between data in the matrix obey lðdisÞ ¼ e�kdis. For

Laplace distribution in Laplace self-attention, the impor-

tance of data decreases slowly as the distance increases,

which retains the importance of non-neighboring data in

sequence representation to a some extent, but fails to reflect

the fact that adjacent data are of prominent importance.

The Laplace self-attention is denoted as follows:

Sl � LðdisÞ ¼ LðdisÞ þ Ql Klð ÞT
ffiffiffiffiffi

dk
p ; ð9Þ

Ol � LðdisÞ ¼ softmax Sl � LðdisÞ � Dð ÞVl: ð10Þ

Cauchy self-attention Consequently, we propose a Cauchy

self-attention, which can effectively improve the impor-

tance of adjacent data, and the importance of data will also

slowly decrease as the distance increases rather than

rapidly approaching zero. As shown in the left half of

Fig. 2, Cauchy self-attention is formed by introducing a

Cauchy weighting matrix CðdisÞ 2 RH�H into original

score matrix. Cauchy weighting matrix CðdisÞ is calculated
as follows:

CðdisÞ ¼

c1;1 c1;2 � � � c1;H
c2;1 c2;2 � � � c2;H
..
.

cH;1 cH;2 � � � cH;H

2

6

6

6

6

4

3

7

7

7

7

5

; ð11Þ

where ci;j is
1

1þkji�jj2, which follows Cauchy distribution.

That is, Cauchy matrix is utilized to pay more attention

to the local region around the current data, and the attention
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weights become smaller as the distance increases. To

highlight the advantages of Cauchy distribution more

intuitively, graphical illustration of three distributions is

given in Fig. 3. The Gaussian distribution curve shows that

the importance of the data decreases rapidly. The impor-

tance of data approaches zero when the distance is greater

than 2, which suppresses the representation of the current

data by the slightly distant data. For Laplace distribution,

the orange curve decays down too slowly to reflect the

prominent importance of adjacent data well. In contrast,

Cauchy distribution, as shown in the green curve, falls

more rapidly than orange curve, rather than approaching

zero as quickly as blue curve. This makes the model not

only pay more attention to adjacent data, but also pay less

attention to remote data. The proposed Cauchy self-atten-

tion is denoted as follows:

Sl � CðdisÞ ¼ CðdisÞ þ Ql Klð ÞT
ffiffiffiffiffi

dk
p ; ð12Þ

Ol � CðdisÞ ¼ softmax Sl � CðdisÞ � Dð ÞVl: ð13Þ

We add a feed-forward layer after the output of the self-

attention layer to enhance the expressiveness of the model.

As shown in Fig. 2, the input of the feed-forward layer is

one of the following three expressions:

Al � G ¼ LayerNormðOl � GðdisÞ þ XinputÞ; ð14Þ

Al � L ¼ LayerNormðOl � LðdisÞ þ XinputÞ; ð15Þ

Al � C ¼ LayerNormðOl � CðdisÞ þ XinputÞ; ð16Þ

where LayerNorm denotes the normalization operation in

Add and Norm. Take Al � C 2 RB�H�d as an example, the

feed-forward layer that consists of two fully connected

layers and ReLU activation function can be formulated as

follows:

Fl � C ¼ max 0; ðAl � CÞW1 þ b1ð ÞW2 þ b2; ð17Þ

where Fl � C 2 RB�H�d denotes the transformed space of

the self-attention layer’s output, W1 2 Rd�dff , b1 2 Rdff ,

W2 2 Rdff�d, b2 2 Rd, where d is the dimension of the

input vector transformed by the input layer and dff is the

dimension of the middle layer of the two fully connected

layers. In our model, dff ¼ 3d.

Then, we employ an output layer shown in Fig. 1 to

generate the final prediction. Formally,

ŷt ¼ ð bFl � CÞW3 þ b3: ð18Þ

where ŷt is the prediction at time t. bFl � C denotes the

transformed value after the Add and Norm operation on

Fl � C 2 RB�H�d. Note that the dimension of bFl � C is

originally the same as that of Fl � C. But here

bFl � C 2 RB�Hdout , because we transform bFl � C 2
RB�H�d into bFl � C0 2 RB�H�dout through a linear layer

shown in Fig. 2 first, and then, we reshape bFl � C0 2
RB�H�dout into bFl � C0

reshape 2 RB�Hdout , where dout is the

output dimension. W3 2 RHdout�dout , b3 2 Rdout ,

3.3.3 Output

Each output of each self-attention block is a predicted

value for each future step. Of particular concern is that our

goal is to provide sequential level forecasts. To achieve this

goal, the most intuitive idea is to connect multiple SA-

blocks. The final sequential level predicted values can be

denoted as:

Ŷ ¼ ŷt; ŷtþ1; . . .; ŷtþb�1

� �

: ð19Þ

Noted that the more output, the deeper the network, the

easier it is for the gradients to disappear/explode. Vanish-

ing gradient problem is mainly caused by the repeated

application of chain rule when calculating the gradients. A

chain of factors are produced by the chain rule. SATVNN

mitigates this problem because it breaks the chain into the

sum of a series of factors by interleaving the outputs

between SA-blocks, which is more stable than performing

a product operation on a series of factors. That is to say, the

sum of the smaller factors is less likely to approach zero

(vanishing) than their product. This makes the prediction Ŷ

more accurate.

Fig. 3 Decreasing trend of the importance of data with the increase in

distance
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3.3.4 Time-variant analysis

SATVNN is a novel time-variant structure, which can

better learn the dynamic changes of time series on different

scales, especially in capturing the dynamic changes of the

recent data. The time variance of SATVNN is embodied in

the change of network structure between interleaved out-

puts with time. The concrete proof of the time variance is

given below.

As illustrated in Fig. 4, SATVNN with input Xt, hidden

state SAt and predicted value ŷt at time t given by

SAt ¼ ft Xt; SAt�1; ŷt�1ð Þ; ð20Þ

ŷt ¼ gt SAtð Þ ð21Þ

is time variance, where ft represents a SA-block at time t, gt
is the Output layer at time t, SAt�1 is the hidden state at

time t � 1 and ŷt�1 is the predicted values at time t � 1.

According to Eqs. (20) and (21), ŷt can be represented

as:

ŷt ¼ gt ft Xt; SAt�1; ŷt�1ð Þð Þ: ð22Þ

Proof Given input Xt, hidden state SAt and predicted

value ŷt, Xt will be replaced by the following expression

X0
t ¼ Xt�t0 when time is shifted by t0. Similarly, let

SA0
t ¼ SAt�t0 . Time invariance requires ŷt�t0 ¼ ŷt

0. The

reason is that a time-invariant system is defined as a system

in which the time shift of the input sequence causes the

corresponding shift in the output sequence [48]. Then,

according to Eq. (22), ŷt�t0 is given by:

ŷt�t0 ¼ gt�t0 ft�t0 Xt�t0 ; SAt�t0�1; ŷt�t0�1

� �� �

; ð23Þ

and ŷt
0 is formed by

ŷt
0 ¼ g0t f

0
t X0

t ; SA
0
t�1; ŷ

0
t�1

� �� �

¼ g0t f
0
t Xt�t0 ; SAt�t0�1; ŷ

0
t�1

� �� �

:
ð24Þ

where ŷ0t is the predicted value corresponding to the input

X0
t and ŷ0t�1 is the predicted value of the previous step.

The above derivation process proves that the SATVNN

is time variance, because ŷt�t0 6¼ ŷt
0. h

SATVNN is time variance because its parameters and

architecture vary over time on input and output sequences.

Comparatively, RNN has fixed parameters that are repeated

at each time step, resulting in a time-invariant model. In

order to better understand the time variance of SATVNN,

we go further into the time invariance proof of RNN as

follows.

RNN with input Xt, hidden state ht and predicted value

ŷt at time t given by

ht ¼ f Xt; ht�1ð Þ; ð25Þ

ŷt ¼ g htð Þ ð26Þ

is time invariance, where f is a hidden layer, g is the output

Fig. 4 Graphical illustration of time-variant property of SATVNN.

The network structure between interleaved outputs varies over time in

architecture and parameters. We utilize different colored SA-blocks

(ft), different colored output layers (gt) and different colored outputs

(ŷt) to denote the heterogeneity over a sequence
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layer and ht�1 denotes the hidden state at time t � 1.

According to Eqs. (25) and (26), we obtain ŷt as follows:

ŷt ¼ g f Xt; ht�1ð Þð Þ: ð27Þ

h

Proof Given input Xt, hidden state ht and predicted value

ŷt, Xt will be replaced by the following expression X0
t ¼

Xt�t0 when time is shifted by t0. Similarly, let h0t ¼ ht�t0 .

Time invariance requires ŷt�t0 ¼ ŷt
0. h

Then, according to Eq. (27), ŷt�t0 is given as follows:

ŷt�t0 ¼ g f Xt�t0 ; ht�t0�1ð Þð Þ; ð28Þ

and ŷt
0 is given by:

ŷt
0 ¼ g f X0

t ; h
0
t�1;

� �� �

¼ g f Xt�t0 ; ht�t0�1ð Þð Þ:
ð29Þ

Thus, RNN is time invariant because ŷt�t0=ŷt
0. h

3.4 Loss function

Our proposed SATVNN framework needs to be trained by

minimizing the mean squared error (MSE) loss function,

which is used by a variety of traditional forecasting

methods to evaluate the difference between the true values

and the predicted values. The optimization objective can be

denoted as follows:

LH ¼ Y � Ŷ
�

�

�

�

2

2
; ð30Þ

where h denotes the learning parameters.

4 Experiments

In this section, we first describe the real-world datasets.

Then a set of baseline models for comparison and the

experimental settings are provided. To demonstrate the

effectiveness of Cauchy self-attention, we compare the

performance of Gaussian self-attention-based SATVNN

(SATVNN-G), Laplace self-attention-based SATVNN

(SATVNN-L) and Cauchy self-attention-based SATVNN

(SATVNN-C) on seven real-world datasets. Additionally,

the model with the best performance is selected for further

comparison with other baseline models. At the end of this

section, we conduct some case studies and display the

forecast results graphically.

4.1 Data description

Seven real-world datasets are collected from [49] to eval-

uate our models. We note that there are significant factors

captured in any of these datasets, such as periodicity,

varying seasonal shape, varying seasonal amplitude and

noise. Additional detailed statistics of these datasets are

shown in Table 1. In our experiments, we normalize the

datasets used for training and test, in which the last 10% of

the datasets are used for test.

4.2 Baseline methods

For fairness, each model uses the same input and Mean

Square Error (MSE) loss function. A range of baseline

models are as follows:

• SARIMA [50]: Seasonal Autoregressive Integrated

Moving Average is one of the most representative

methods in traditional time series forecasting field. It is

suitable for forecasting time series with tendency and

periodicity.

• DLM [51]: Dynamic Linear Model can recursively

estimate and predict through Kalman filter.

• Seq2Seq [24]: Seq2Seq is a neural network of Encoder–

Decoder structure. The encoder can encode sequence

information of any length into a vector c. After

obtaining the context information vector c, the decoder

can decode the information and output it as a sequence.

• Seq2seq-att [52]: Attention is used for improving the

effect of RNN based encoder–decoder model. Attention

gives the model the ability to discriminate, which

makes neural network models more flexible to be

learned.

• DeepAR [20]: It is a model based on Autoregressive

Recurrent Neural Network. It can effectively learn the

global dependencies from the relevant time series and

can learn complex patterns by training the autoregres-

sive recursive networks.

• TCN [53]: Temporal Convolutional Network is a

variant of convolution neural network. It utilizes dilated

convolutions to obtain the global information of the

whole sequence and expand the receptive field.

• ForecastNet [15]: A deep feed-forward architecture for

multi-step time-series forecasting. The structure and

parameters of ForecastNet change over time, which is

different from traditional networks such as RNN and

CNN. Of the four variants of ForecastNet, the one

named cFN2 with a linear output layer performs best.

4.3 Parameter settings and sensitivity

The hyperparameters of our three proposed models include

the number of encoding blocks Nx, batch size B, epoch s
and adjustable parameter k. Considering both the perfor-

mance and efficiency, we set Nx ¼ 2, B ¼ 16, s ¼ 100, and

k ¼ 1
3
. In addition, we take three proposed models with a
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richer vector dimension of the length of input data RH ¼
75 and the last dimension of input data Rd ¼ 70 which

confirmed by a grid search. Furthermore, diagrams drawn

in Figs. 5, 6 and 7 partially display the parameter sensi-

tivity of the three proposed models in seven datasets.

4.4 Experimental comparison of different self-
attention mechanisms

Table 2 summarizes the prediction results obtained by the

time-variant neural networks with three Self-Attention

mechanisms on the seven datasets. We use the Mean

Absolute Scaled Error (MASE) [54] and the Symmetric

Mean Absolute Percentage Error (SMAPE) [55] to evaluate

the performance of these models. The results indicate that

SATVNN-C outperforms the other two models on six real-

world datasets except for the England temperature dataset.

Even for the England temperature dataset, only the SMAPE

of SATVNN-C is slightly higher than that of the

SAVTNN-L model, but the MASE of SATVNN-C is still

lower than the other two models. Furthermore, some rep-

resentative examples are given to verify the effectiveness

of SATVNN-C. Specifically, as illustrated in Fig. 8, the

MASE of SATVNN-C on the England temperature dataset

is 2.8% and 2.4% lower than that of SATVNN-G and

SATVNN-L, respectively. For Ozone dataset, the MASE of

SATVN-N-C is 3.5% and 5.0% lower than that of

SATVNN-G and SATVNN-L as visualized in Fig. 9.

What’s more, the results shown in Fig. 10 demonstrate that

SMAPE of SATVNN-C is 9.9% and 6.8% lower than that

of SATVNN-G and SATVNN-L on the Niagra dataset. For

the remaining datasets, SATVNN-C also achieves results

from 0.1 to 4% lower than the other two models.

That is because Gaussian distribution in SATVNN-G

shields the contribution of non-adjacent data to the current

data, while Laplace distribution in SATVNN-L does not

adequately emphasize the prominent importance of adja-

cent data. For Cauchy distribution in SATVNN-C, it not

only retains the relative importance of non-adjacent data to

the current data but also further highlights the importance

of adjacent data.

In addition to comparing the forecasting accuracy, we

also conduct further experimental investigations to esti-

mate the running time of the three models on seven data-

sets. Table 3 shows that less running time is taken by our

proposed SATVNN-C per epoch than the other two

Table 1 Dataset properties
Dataset Max Min Mean SD Resolution Length

Niagra 7610.0 1860.0 5574.54 1186.47 Monthly 1834

Ozone 462.0 266.0 338.02 38.37 Monthly 482

Pphil 401.8 2.3 89.79 47.85 Monthly 1572

River-flow 66,500 3290 23,310.24 13179.27 Monthly 1368

Ssack 1919.88 28.23 277.38 277.09 Monthly 780

Weather (England temperature) 18.8 - 3.1 9.22 4.79 Monthly 2976

Water-usage 226.3 76.83 118.76 26.31 Monthly 276

Fig. 5 Parameter sensitivity of SATVNN-C model in seven datasets
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approaches. The main reason for this is that Gaussian and

Laplace distributions have the exponential computational

complexity of e, while our distribution does not have such

computational complexity. Taken together, SATVNN can

Fig. 6 Parameter sensitivity of SATVNN-G model in seven datasets

Fig. 7 Parameter sensitivity of SATVNN-L model in seven datasets

Table 2 Results of different self-attention mechanisms based on time-variant neural networks

Dataset Niagra Ozone Pphil River-flow Ssack Weather (England temperature) Water-usage

Methods Metrics

SATVNN-C MASE 0.512 0.658 0.772 0.631 1.102 0.443 0.721

SMAPE 11.452 27.884 42.231 26.622 54.418 10.784 7.142

SATVNN-G MASE 0.528 0.682 0.785 0.634 1.105 0.456 0.752

SMAPE 12.712 27.953 42.525 26.954 54.486 10.825 7.183

SATVNN-L MASE 0.527 0.693 0.788 0.633 1.115 0.454 0.725

SMAPE 12.295 27.967 42.286 26.988 56.214 10.741 7.325
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provide more reliable input through SA-block, and our

proposed Cauchy self-attention block enables SATVNN to

produce more accurate prediction results faster.

4.5 Experimental results of SATVNN-C compared
with baseline methods

Table 4 records the experimental results of the proposed

SATVNN-C model and the baseline models running 100

epochs on seven datasets. It can be seen that although

SARIMA and DLM models are both linear models [56],

they can trivially obtain a high performance which is very

close to the best result on the Pphil data. The main reason

for this result is that the dynamics of the Pphil data are

more linear. However, DLM and SARIMA perform poorly

on such datasets with periodic shapes and amplitudes

changing over time.

We obtain another important insight from Table 4 that

DeepAR performs poorly on several datasets. This is

mainly because this model cannot well capture the dynamic

changes of these datasets with different amplitudes, dif-

ferent seasonal shapes and complex trends, such as the

Water-Usage dataset and the Ssack dataset. TCN achieves

low accuracy on most datasets. The reason for its poor

performance may be performing dilated convolutions with

fewer samples.

As one of the commonly used time series forecasting

models in deep learning, Seq2Seq-att model shows supe-

rior performance on the Ozone dataset due to its unique

mechanism that enables the model to capture long-term

dependencies of time series. On the remaining datasets, the

proposed model achieves competitive performance. This

reveals that in addition to capturing the long-term depen-

dencies of time series, it is necessary to further learn the

local dependencies of temporal data.

As a powerful competitive model of our proposed

SATVNN-C model, ForecastNet provides better results

than other linear and nonlinear models, which is mainly

due to its unique time-variant structure. However, it per-

forms worse on several datasets than our proposed

SATVNN-C model, which proves that the proposed time-

variant SATVNN-C model can more flexibly capture the

dynamic changes of complex nonlinear temporal data on

different scales than ForecastNet and also demonstrates

that the newly proposed time-variant structure makes a

greater contribution to improving the prediction perfor-

mance than original time-variant structure.

Fig. 8 MASE of three versions of our proposed model on the England

temperature dataset

Fig. 9 MASE of three versions of our proposed model on the Ozone

dataset

Fig. 10 SMAPE of three versions of our proposed model on the

Niagra dataset

8748 Neural Computing and Applications (2022) 34:8737–8754

123



4.6 Case study

In this section, we display the prediction results of Fore-

castNet and SATVNN-C on several datasets in graphical

form to illustrate the benefit of our proposed model in

capturing the dynamic changes of time series on different

scales, especially in capturing the dynamic changes of the

recent data. Figures 11, 12 and 13 investigate the

forecasting performance of SATVNN-C (part (a)) and

ForecastNet (part (b)) on the Ssack, Ozone and Niagra

dataset. Figure 11 shows that the first, second and third

cycle patterns of the Ssack dataset are different. The blue

curve denotes the real values of the first two periods, and

the real values and predicted values of the next period are

represented by orange curve and green curve, respectively.

As depicted in Fig. 11, ForecastNet model is not as

Table 3 Running time of SATVNN-G, SATVNN-L and SATVNN-C on seven datasets (1 epoch)

Datasets River-flow Ozone Niagra Weather (England temperature) Water-usage Pphil Ssack

SATVNN-G 9.193 6.534 11.923 18.558 2.544 18.322 9.504

SATVNN-L 9.002 5.699 11.682 18.443 2.455 18.303 9.025

SATVNN-C 8.811 5.650 11.678 18.301 2.417 17.982 8.823

Table 4 Results of SATVNN-C and other baseline models

Dataset Metrics SARIMA DLM Seq2Seq Seq2Seq-attn TCN DeepAR ForecstNet (cFN2) SATVNN-C

Niagra MASE 0.891 0.735 0.542 0.591 0.558 0.538 0.535 0.512

SMAPE 22.562 30.267 12.364 13.983 15.852 15.624 12.268 11.453

Ozone MASE 0.872 0.787 1.534 0.575 0.687 1.013 0.755 0.652

SMAPE 36.534 31.212 59.721 28.018 33.853 41.814 36.035 27.883

Pphil MASE 0.792 0.834 0.893 1.102 0.951 1.025 0.788 0.772

SMAPE 42.253 45.621 49.842 47.523 45.828 46.121 42.268 42.231

River-flow MASE 1.152 1.259 0.878 1.801 1.138 1.122 0.636 0.631

SMAPE 32.263 28.265 31.628 29.132 38.693 35.261 26.785 26.623

Ssack MASE 1.787 1.622 1.304 1.223 1.422 1.519 1.119 1.102

SMAPE 69.355 69.951 59.362 62.653 59.891 68.235 58.571 54.413

England temperature MASE 0.644 0.551 0.482 0.408 0.491 0.512 0.457 0.443

SMAPE 25.589 19.632 16.813 19.565 18.967 18.265 10.876 10.783

Water-usage MASE 1.327 1.358 1.363 1.252 1.154 1.225 0.895 0.722

SMAPE 7.362 8.691 9.857 12.524 13.252 17.167 8.515 7.142

Fig. 11 Results of SATVNN-C (a) and ForecastNet (b) on the Ssack

dataset

Fig. 12 Results of SATVNN-C (a) and ForecastNet (b) on the Ozone

dataset
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sensitive as our proposed model in capturing the latest data

changes. Specifically, it is difficult for ForecastNet to reach

the peak of the next forecast period, and the predicted

values after the marked point � are quite different from the

ground truth. On the contrary, our model can capture the

change of the peak value well, and the predicted values

after the marked point � are basically consistent with the

real values. Similar situations also occur in Figs. 12

and 13.

Knowing whether a developed method can be successful

in predicting only one step, or whether it is successful also

in predicting more than one step can provide a good view

of the success of the program. Therefore, we also compare

the performance of ForecastNet and SATVNN-C for

forecasting the next 3 or 6 data when time t = 0. We

record the results in Tables 5 and 6. With in-depth analy-

sis, these examples demonstrate that the SATVNN-C

model has a stronger ability to capture the dynamic chan-

ges of time series on different scales than ForecastNet.

5 Conclusion

This paper implements a novel time-variant framework

named SATVNN for multi-step time series and generally

capable of capturing dynamic changes of time series on

different scales more accurately with its time-variant

structure. Three versions are derived from this framework,

which have different self-attention blocks whose goals are

capturing local dynamics of temporal sequences, to make

the model better reflect the recent changes in time series.

Within our conducted experiments, the proposed

SATVNN-C shows promising results compared with

baseline models. In addition, the other two versions with

Gaussian and Laplace self-attention block also obtain good

forecasting accuracy. For our future work, we intend to

explore the use of memory reduction techniques because

the proposed models may need more memory by avoiding

sharing parameters.

Appendix

Proof of convergence of SATVNN

The weight of the time-invariant network is often constant,

and the mapping between the input and output of the net-

work is fixed after training. However, the mapping rela-

tionship between the input and output of the time-variant

Fig. 13 Results of SATVNN-C (a) and ForecastNet (b) on the Niagra

dataset

Table 5 Results of ForecastNet and SATVNN-C for forecasting next

3 data

Dataset Metrics ForecastNet (cFN2) SATVNN-C

Niagra MASE 0.511 0.494

SMAPE 12.238 11.281

Ozone MASE 0.650 0.646

SMAPE 26.750 26.384

Pphil MASE 0.777 0.774

SMAPE 42.353 42.218

River-flow MASE 0.639 0.635

SMAPE 25.858 26.702

Ssack MASE 1.123 1.075

SMAPE 59.745 58.085

England temperature MASE 0.452 0.448

SMAPE 11.022 10.852

Water-usage MASE 0.751 0.745

SMAPE 7.253 7.216

Table 6 Results of ForecastNet and SATVNN-C for forecasting next

6 data

Dataset Metrics ForecastNet (cFN2) SATVNN-C

Niagra MASE 0.523 0.510

SMAPE 12.628 11.627

Ozone MASE 0.655 0.643

SMAPE 26.921 26.111

Pphil MASE 0.781 0.767

SMAPE 42.492 41.990

River-flow MASE 0.634 0.626

SMAPE 26.166 26.006

Ssack MASE 1.117 1.073

SMAPE 57.446 56.508

England temperature MASE 0.451 0.446

SMAPE 10.987 10.841

Water-usage MASE 0.731 0.725

SMAPE 7.226 7.018
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system will change with time. In this paper, we propose a

SATVNN with time-variant weights, which is used to

establish a neural network each time, and the neural net-

work at that time is used to approach the mapping rela-

tionship between the input and output of the system at that

time. We regard time-variant weight learning as an

unknown time-variant parameter estimation problem for

nonlinear time-variant systems. In [57], an iterative learn-

ing least squares algorithm is proposed to train the weights

of the time-variant network. Theoretical analysis shows

that the iterative learning least squares algorithm can

ensure that the modeling error converges to zero along the

iteration axis in the whole time interval. We will elaborate

on the reasons in the following paragraphs.

Time-variant neural network The time-variant neural net-

work whose input, output and weight change with time can

be expressed as follows:

yðtÞ ¼ ETðxðtÞÞWðtÞ ð31Þ

or

yðtÞ ¼ ETðxðtÞ; tÞWðtÞ ð32Þ

where xðtÞ ¼ x1ðtÞ; x2ðtÞ; . . .; xnðtÞ½ �T2 Rn is input vector.

EðxðtÞÞ ¼ ½E1ðxðtÞÞ; E2ðxðtÞÞ; . . .; E lðxðtÞÞ�T is a set of

activation function vectors. y(t) is output. WðtÞ ¼
w1ðtÞ; . . .;wlðtÞ½ �T is an adjustable time-variant weight

vector. l is the number of neuron nodes.

Time-variant system Let the nonlinear discrete time-variant

system be:

ymðtÞ ¼ f xmðtÞ; tð Þ ð33Þ

where f is a nonlinear time-variant function, xmðtÞ is input
vector. t 2 f0; 1; . . .;Ng is a finite time interval. m 2
f0; 1; . . .g is the number of iterations and ymðtÞ is output. In
the following discussion, we all assume that xmðtÞ is

bounded.

Iterative learning least square method Let the nonlinear

time-variant system (33) be run repeatedly for m time from

the 0th time, and the input and output data pairs

f xiðtÞ; yiðtÞð Þ; t ¼ 0; 1; . . .;N; i ¼ 0; 1; . . .;mg are generated

by the system. We will use the time-variant neural network

(32) to approximate the above input–output mapping.

First, we define EmðtÞ ¼ ½ET
0 ðtÞ; ET

1 ðtÞ; . . .; ET
mðtÞ�

T
and

YmðtÞ ¼ ½y0ðtÞ; y1ðtÞ; . . .; ymðtÞ�T,where E iðtÞ ¼ EðxiðtÞ; tÞ,
according to Eq. (32),

YmðtÞ ¼ EmðtÞWðtÞ ð34Þ

We hope to find out the least square solution for W(t),

ŴmðtÞ, so that the following loss function is minimized.

JmðŴmðtÞ; tÞ ¼
1

2
½YmðtÞ � EmðtÞŴmðtÞ�T

½YmðtÞ � EmðtÞŴmðtÞ�
ð35Þ

Write Eq. (35) further as:

2Jm ŴmðtÞ; t
� �

¼ YT
mðtÞ I � EmðtÞ ET

mðtÞEm

� ��1ðtÞET
mðtÞ

h i

YmðtÞ þ ŴmðtÞ � ET
mðtÞEmðtÞ

� ��1
ET
mðtÞYmðtÞ

h iT

ET
mðtÞEmðtÞ ŴmðtÞ � ET

mðtÞEmðtÞ
� ��1

ET
mðtÞYmðt þ 1Þ

h i

ð36Þ

Note that only the second term on the right side of the

above formula is related to ŴmðtÞ, set this item zero. We

assume that ET
mðtÞEmðtÞ is invertible and achieve the min-

imum value:

ŴmðtÞ ¼ ET
mðtÞEmðtÞ

� ��1
ET
mðtÞYmðtÞ ð37Þ

According to Eq. (37), calculating ŴmðtÞ requires calcu-

lating the inverse of EmðtÞ. The dimension of EmðtÞ will

increase, and the inverse computation will become time-

consuming as iteration increases. To solve this problem, an

iterative learning least square algorithm is derived.

Let us define Q�1
m ðtÞ ¼ ET

mðtÞEmðtÞ, according to the

definition of EmðtÞ, we can get:

Q�1
mþ1ðtÞ ¼

Pmþ1
i¼0 E iðtÞET

i ðtÞ ¼
Pm

i¼0 E iðtÞET
i ðtÞþ

Emþ1ðtÞET
mþ1ðtÞ and namely:

Q�1
mþ1ðtÞ ¼ Q�1

m ðtÞ þ Emþ1ðtÞET
mþ1ðtÞ ð38Þ

Use Matrix inversion lemma,

ðA�1 þ HR�1HTÞ�1 ¼ A� AHðHTAH þ RÞ�1HTA, let

A ¼ QmðtÞ, H ¼ Emþ1ðtÞ, R ¼ 1. we can get:

Qmþ1ðtÞ ¼ QmðtÞ �
QmðtÞEmþ1ðtÞET

mþ1ðtÞQmðtÞ
1þ ET

mþ1ðtÞQmðtÞEmþ1ðtÞ
ð39Þ

According to the definition of Q�1
m ðtÞ, we can compute Ŵm

such that:

Ŵmþ1 ¼ Qmþ1E
T
mþ1Ymþ1

¼ Qmþ1 ET
mYm þ Emþ1ymþ1

� �

¼ Qmþ1 Q�1
m Ŵm þ Emþ1ymþ1

� �

¼ Ŵm þ Qmþ1Emþ1 ymþ1 � ET
mþ1Ŵm

� �

ð40Þ

Define error emþ1ðtÞ ¼ ymþ1ðtÞ � Emþ1ðtÞŴmðtÞ
According to Eq. (39), we get:

Ŵmþ1ðtÞ ¼ ŴmðtÞ þ
QmðtÞEmþ1ðtÞ

1þ ET
mþ1ðtÞQmðtÞEmþ1ðtÞ

emþ1ðtÞ

ð41Þ
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According to Eqs. (39) and (41), update laws for QmðtÞ and
ŴmðtÞ indicate iterative learning least square algorithm of

time-variant neural for network training.

Convergence analysis We analyze the convergence of

iterative learning algorithm.

Theorem 1 For system (33), the learning algorithm Eqs. (39)–(41)
has the following properties:

(i)

For t ¼ 0; 1; . . .;N and m ¼ 0; 1; . . .;

~Wmþ1ðtÞ
�

�

�

�

2
6 qmðtÞ ~WmðtÞ

�

�

�

�

2 ð42Þ

~WmðtÞ
�

�

�

�

2
6 q0ðtÞ ~W0ðtÞ

�

�

�

�

2 ð43Þ

where qmðtÞ ¼ kmaxðQ�1
m ðtÞÞ=kminðQ�1

m ðtÞÞ, minimum

eigenvalues and maximum eigenvalues of Q�1
m ðtÞ are

represented by kminðQ�1
m ðtÞÞ and kmaxðQ�1

m ðtÞÞ,
respectively.

(ii) For t ¼ 0; 1; . . .;N,

lim
m!1

emþ1ðtÞ ¼ 0 ð44Þ

Proof By definition, emþ1ðtÞ ¼ ET
mþ1ðtÞ ~WmðtÞ, according to

Eqs. (39)–(41), we can get:

Qmþ1ðtÞQ�1
m ðtÞ ¼ I �

QmðtÞEmþ1ðtÞET
mþ1ðtÞ

1þ ET
mþ1ðtÞQmðtÞEmþ1ðtÞ

ð45Þ

~Wmþ1ðtÞ ¼ I �
QmðtÞEmþ1ðtÞET

mþ1ðtÞ
1þ ET

mþ1ðtÞQmðtÞEmþ1ðtÞ

" #

~WmðtÞ ð46Þ

Combine Eqs. (45) and (46), we can get:

Q�1
mþ1ðtÞ ~Wmþ1ðtÞ ¼ Q�1

m ðtÞ ~WmðtÞ ð47Þ

Define VmðtÞ ¼ ~W
T

mðtÞQ�1
m ðtÞ ~WmðtÞ, use Eq. (45), we can

get:

Vmþ1ðtÞ � VmðtÞ ¼ �
~W
T

mðtÞEmþ1ðtÞET
mþ1ðtÞ ~WmðtÞ

1þ ET
mþ1ðtÞQmðtÞEmþ1ðtÞ

ð48Þ

Therefore, VmðtÞ are non-increasing and nonnegative for m,

namely

Vmþ1ðtÞ 6 VmðtÞ ð49Þ

According to Eq. (38), we can get:

kminðQ�1
mþ1ðtÞÞ > kminðQ�1

m ðtÞÞ > kminðQ�1
0 ðtÞÞ ð50Þ

Combine Eq. (49), we can get:

kminðQ�1
m ðtÞÞ ~Wmþ1ðtÞ

�

�

�

�

2
6 kmaxðQ�1

m ðtÞÞ ~WmðtÞ
�

�

�

�

2 ð51Þ

Therefore:

~Wmþ1ðtÞ
�

�

�

�

2
6 qmðtÞ ~WmðtÞ

�

�

�

�

2 ð52Þ

Apparently there is VmðtÞ 6 V0ðtÞ, combine Eq. (49), we

can get:

kminðQ�1
0 ðtÞÞ ~WmðtÞ

�

�

�

�

2
6 kmaxðQ�1

0 ðtÞÞ ~W0ðtÞ
�

�

�

�

2 ð53Þ

This ensures that ~WmðtÞ
�

�

�

�

2
is uniformly bounded. The

property (i) is proved. h

Proof According to Eq. (48), we can get:

e2mþ1ðtÞ
1þ ET

mþ1ðtÞQmðtÞEmþ1ðtÞ
¼ VmðtÞ � Vmþ1ðtÞ ð54Þ

Sum the above formula from 0 to m, we get:

X

m

i¼0

e2iþ1ðtÞ
1þ ET

iþ1ðtÞQiðtÞE iþ1ðtÞ
¼ V0ðtÞ � Vmþ1ðtÞ 6 V0ðtÞ

ð55Þ

Because V0ðtÞ is bounded, therefore:

lim
m!1

e2mþ1ðtÞ
1þ ET

mþ1ðtÞQmðtÞEmþ1ðtÞ
¼ 0 ð56Þ

Use kmax Qmþ1ðtÞð Þ 6 kmax QmðtÞð Þ, we can get:

ET
mþ1ðtÞQmðtÞEmþ1ðtÞ 6 kmax Q0ðtÞð ÞET

mþ1ðtÞEmþ1ðtÞ
ð57Þ

According to Eq. (56), we can get:

lim
m!1

emþ1ðtÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ kmax Q0ðtÞð ÞET
mþ1ðtÞEmþ1ðtÞ

q ¼ 0 ð58Þ

The input xmðtÞ is bounded; then, Emþ1ðtÞ is bounded. In

Eq. (58), the denominator term is bounded and nonzero;

then, we can get:

lim
m!1

emþ1ðtÞ ¼ 0; t ¼ 0; 1; . . .;N ð59Þ

h

This ensures the uniform convergence of the estimation

error and proves the property (ii). Therefore, the learning

algorithm we give ensures the boundedness of time-variant

weights. The estimation error on a finite time interval can

asymptotically converge to zero.
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